معرفی ملات سبز کم‌کربن حاوی خاک رس کلسینه بازیافتی کارخانه کاشی و سرباره کوره آهن‌‌گدازی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی، بابل، ایران

چکیده

به‌‌منظور کاهش اثرات زیست‌‌محیطی و همچنین افزایش بهره‌‌وری انرژی در فرآیند تولید سیمان، امروزه از مواد جایگزین کلینکر در سیمان استفاده می‌‌شود تا با مقدار معینی از کلینکر تولیدی کارخانه سیمان بتوان مقدار بیشتری سیمان مرکب با مشخصات یکسان تولید نمود. این امر با ترکیب مناسب مواد کم‌کربن و سازگار با محیط زیست حاصل می‌‌گردد. هدف، تولید سیمانی است که ضمن در دسترس بودن مصالح منجر به کاهش انتشار دی‌اکسید کربن شود. در این مطالعه، از مواد معدنی بازیافتی (خاک رس بازیافتی و سرباره کوره آهن‌‌گدازی)، رس کلسینه و همچنین پودر سنگ‌آهک به عنوان جایگزین جزئی سیمان/کلینکر برای ساخت سیمان کم‌‌کربن استفاده شده است. مشخصات ملات تازه و مقاومت فشاری از جمله آزمایش‌‌هایی هستند که در این مطالعه در نظر گرفته شده‌‌اند. از این‌‌رو، 16 طرح اختلاط شامل 5 طرح اختلاط ملات حاوی رس کلسینه، پودر سنگ‌آهک و مواد بازیافتی برای جایگزینی سیمان و 9 طرح اختلاط حاوی رس کلسینه، پودر سنگ‌آهک و مواد بازیافتی برای جایگزینی پودر کلینکر به همراه دو طرح مرجع تهیه شدند. نتایج نشان داد که مقاومت فشاری طرح‌‌های حاوی خاک رس بازیافتی در سنین مختلف مشابه طرح‌‌های حاوی خاک رس طبیعی است. براساس نتایج، مقاومت فشاری طرح‌‌های حاوی خاک رس بازیافتی و سنگ‌آهک با 30 درصد جایگزینی در مقایسه با طرح مرجع حدود 20 درصد کاهش یافته است. این در حالی است که کاهش مقاومت فشاری طرح‌‌های 35 درصد جایگزینی حاوی مواد معدنی بازیافتی تنها کمتر از 10 درصد بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Production of green low-carbon mortar containing recycled calcined clay from the tile factory and ground granulated blast furnace slag

نویسندگان [English]

  • Mohammadreza Alamian
  • Mehdi Dehestani
  • Seyed Sina Mousavi
Faculty of Civil Engineering, Babol Noshirvani University of Technology
چکیده [English]

To mitigate environmental impacts and increase energy efficiency in the cement production process, alternative materials to clinker are now used in cement, allowing for the production of a larger amount of composite cement with identical properties from a certain amount of clinker produced by the cement factory. This is achieved through the appropriate combination of low-carbon and environmentally friendly materials. The aim is to produce cement that not only uses accessible resources but also reduces carbon emissions. In this study, recycled minerals (recycled clay (RC) and ground granulated blast-furnace slag (GG)), calcined clay (CC), and limestone (LS) powder were used as partial replacements for cement/clinker to create low-carbon cement. The properties of fresh mortar and compressive strength tests were considered. Accordingly, 16 mix designs were prepared, including 5 mortar mix designs containing CC, LS powder, and recycled materials as a cement replacement, and 9 mix designs containing CC, LS powder, and recycled materials as a clinker powder replacement, along with two reference mixes. The results showed that the compressive strength of the mixes containing RC at different ages was similar to that of mixes containing CC. Based on the results, the compressive strength of the mixes containing RC and LS with 30% replacement decreased by about 20% compared to the reference mix. Meanwhile, the reduction in compressive strength of the 35% replacement mixes containing recycled minerals was less than 10%.

کلیدواژه‌ها [English]

  • Calcined Clay
  • Recycled
  • Green Mortar
  • Low-Carbon Cement
  • Ground Granulated Blast-Furnace Slag
[1] P.K. Mehta, P. Monteiro, Concrete: microstructure, properties, and materials, (No Title),  (2006).
[2] K.L. Scrivener, A. Nonat, Hydration of cementitious materials, present and future, Cement and concrete research, 41(7) (2011) 651-665.
[3] B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: a review, Cement and concrete composites, 23(6) (2001) 441-454.
[4] Cement Industry Energy and CO2 Performance ‘‘Getting the Numbers Right’’, in:  WBCSD-CSI, Washington, 2009.
[5] C. Tomkins, G. Throwdown, Redefining what’s possible for clean energy by 2020, Gigaton Throwdown, San Francisco,  (2009).
[6] G. Schiller, K. Gruhler, R. Ortlepp, Continuous material flow analysis approach for bulk nonmetallic mineral building materials applied to the German building sector, Journal of Industrial Ecology, 21(3) (2017) 673-688.
[7] D.C. Reis, M. Quattrone, J.F. Souza, K.R. Punhagui, S.A. Pacca, V.M. John, Potential CO2 reduction and uptake due to industrialization and efficient cement use in Brazil by 2050, Journal of Industrial Ecology, 25(2) (2021) 344-358.
[8] L. Doussang, G. Samson, F. Deby, B. Huet, E. Guillon, M. Cyr, Durability parameters of three low-carbon concretes (low clinker, alkali-activated slag and supersulfated cement), Construction and Building Materials, 407 (2023) 133511.
[9] J. Santorsola, L.J. Butler, Material behaviour and flexural performance of low carbon concrete beams containing very high quantities of recycled and secondary materials, Construction and Building Materials, 407 (2023) 133350.
[10] C. Wu, C. Zhang, J. Li, X. Wang, W. Jiang, S. Yang, W. Wang, A sustainable low-carbon pervious concrete using modified coal gangue aggregates based on ITZ enhancement, Journal of Cleaner Production, 377 (2022) 134310.
[11] R. Kajaste, M. Hurme, Cement industry greenhouse gas emissions–management options and abatement cost, Journal of cleaner production, 112 (2016) 4041-4052.
[12] M. Schneider, M. Romer, M. Tschudin, H. Bolio, Sustainable cement production—present and future, Cement and concrete research, 41(7) (2011) 642-650.
[13] P.K. Mehta, P.J. Monteiro, Concrete: microstructure, properties, and materials, McGraw-Hill Education, 2014.
[14] P.S.L. Souza, D.C. Dal Molin, Viability of using calcined clays, from industrial by-products, as pozzolans of high reactivity, Cement and Concrete Research, 35(10) (2005) 1993-1998.
[15] M. Sharma, S. Bishnoi, F. Martirena, K. Scrivener, Limestone calcined clay cement and concrete: A state-of-the-art review, Cement and Concrete Research, 149 (2021) 106564.
[16] A. Alujas, R. Fernández, R. Quintana, K.L. Scrivener, F. Martirena, Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration, Applied Clay Science, 108 (2015) 94-101.
[17] Y. Cao, Y. Wang, Z. Zhang, Y. Ma, H. Wang, Recent progress of utilization of activated kaolinitic clay in cementitious construction materials, Composites Part B: Engineering, 211 (2021) 108636.
[18] V.M. John, B.L. Damineli, M. Quattrone, R.G. Pileggi, Fillers in cementitious materials—Experience, recent advances and future potential, Cement and Concrete Research, 114 (2018) 65-78.
[19] M. Antoni, J. Rossen, F. Martirena, K. Scrivener, Cement substitution by a combination of metakaolin and limestone, Cement and concrete research, 42(12) (2012) 1579-1589.
[20] M. Antoni, Investigation of cement substitution by blends of calcined clays and limestone, EPFL, 2013.
[21] A.C. Emmanuel, P. Haldar, S. Maity, S. Bishnoi, Second pilot production of limestone calcined clay cement in India: the experience, Indian Concr. J, 90(5) (2016) 57-63.
[22] K.L. Scrivener, Options for the future of cement, Indian Concr. J, 88(7) (2014) 11-21.
[23] Y. Dhandapani, T. Sakthivel, M. Santhanam, R. Gettu, R.G. Pillai, Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3), Cement and Concrete Research, 107 (2018) 136-151.
[24] A. Ramezanianpor, A. Yadak Yaraghi, A. Zolfagharnasab, A.M. Ramezanianpour, INVESTIGATION OF MECHANICAL PROPERTIES AND CHLORIDE IONS INGRESS IN CONCRETES CONTAINING CALCINED, Amirkabir Journal of Civil Engineering, 54(3) (2022) 1119-1132.
[25] R. Fernandez, F. Martirena, K.L. Scrivener, The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite, Cement and concrete research, 41(1) (2011) 113-122.
[26] S. Hollanders, R. Adriaens, J. Skibsted, Ö. Cizer, J. Elsen, Pozzolanic reactivity of pure calcined clays, Applied Clay Science, 132 (2016) 552-560.
[27] R. Fernandez Lopez, Calcined clayey soils as a potential replacement for cement in developing countries, EPFL, 2009.
[28] C. He, B. Osbaeck, E. Makovicky, Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects, Cement and concrete research, 25(8) (1995) 1691-1702.
[29] S. Urhan, Alkali silica and pozzolanic reactions in concrete. Part 1: Interpretation of published results and an hypothesis concerning the mechanism, Cement and concrete research, 17(1) (1987) 141-152.
[30] H.H. Murray, Traditional and new applications for kaolin, smectite, and palygorskite: a general overview, Applied clay science, 17(5-6) (2000) 207-221.
[31] A. Pérez, A. Favier, K. Scrivener, F. Martirena, Influence grinding procedure, limestone content and PSD of components on properties of clinker-calcined clay-limestone cements produced by intergrinding, in:  Calcined Clays for Sustainable Concrete: Proceedings of the 2nd International Conference on Calcined Clays for Sustainable Concrete, Springer, 2018, pp. 358-365.
[32] C. Jesus, E.A. Junior, N. Braga, J.S. Junior, M.S. Barata, Coloured concrete produced from low-carbon cements: Mechanical properties, chromatic stability and sustainability, Journal of Building Engineering, 67 (2023) 106018.
[33] Y. Yang, W. Luo, Effect of Sugarcane Bagasse Ash and Ceramic Waste Dust as Partial Replacements of Portland Cement on Corrosion Behavior of HRB400 Low Carbon Steel Reinforcement in 3.5% NaCl, International Journal of Electrochemical Science, 15(12) (2020) 12410-12419.
[34] H. Maraghechi, F. Avet, K. Scrivener, Chloride transport behavior of LC 3 binders, in:  Calcined Clays for Sustainable Concrete: Proceedings of the 2nd International Conference on Calcined Clays for Sustainable Concrete, Springer, 2018, pp. 306-309.
[35] M. Mohit, H. Haftbaradaran, H.T. Riahi, Investigating the ternary cement containing Portland cement, ceramic waste powder, and limestone, Construction and Building Materials, 369 (2023) 130596.
[36] W. Chen, J. Dang, H. Du, Using low-grade calcined clay to develop low-carbon and lightweight strain-hardening cement composites, Journal of Building Engineering, 58 (2022) 105023.
[37] H. Wan, Z. Shui, Z. Lin, Analysis of geometric characteristics of GGBS particles and their influences on cement properties, Cement and concrete research, 34(1) (2004) 133-137.
[38] S. Arivalagan, Sustainable studies on concrete with GGBS as a replacement material in cement, Jordan journal of civil Engineering, 8(3) (2014) 263-270.
[39] Y. Zhao, Y. Gao, G. Chen, S. Li, A. Singh, X. Luo, C. Liu, J. Gao, H. Du, Development of low-carbon materials from GGBS and clay brick powder for 3D concrete printing, Construction and Building Materials, 383 (2023) 131232.
[40] F. Avet, K. Scrivener, Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3), Cement and Concrete Research, 107 (2018) 124-135.
[41] A. Zolfagharnasab, A.A. Ramezanianpour, F. Bahman-Zadeh, Investigating the potential of low-grade calcined clays to produce durable LC3 binders against chloride ions attack, Construction and Building Materials, 303 (2021) 124541.
[42] Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, in:  ASTM C128, ASTM International., West Conshohocken, 2015.
[43] Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, in:  ASTM C136, ASTM International., West Conshohocken, 2014.
[44] Fineness of Hydraulic Cement by Air-Permeability Apparatus, in:  ASTM C204, ASTM International., West Conshohocken, 2011.
[45] Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, in:  ASTM C305, ASTM International., West Conshohocken, 2006.
[46] Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, in:  ASTM C230, ASTM International., West Conshohocken, 2003.
[47] Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), in:  ASTM C109, ASTM International., West Conshohocken, 2002.
[48] T.R. Muzenda, P. Hou, S. Kawashima, T. Sui, X. Cheng, The role of limestone and calcined clay on the rheological properties of LC3, Cement and Concrete Composites, 107 (2020) 103516.
[49] P. Hou, T.R. Muzenda, Q. Li, H. Chen, S. Kawashima, T. Sui, H. Yong, N. Xie, X. Cheng, Mechanisms dominating thixotropy in limestone calcined clay cement (LC3), Cement and Concrete Research, 140 (2021) 106316.
[50] F. Bahman-Zadeh, A.A. Ramezanianpour, A. Zolfagharnasab, Effect of carbonation on chloride binding capacity of limestone calcined clay cement (LC3) and binary pastes, Journal of Building Engineering, 52 (2022) 104447.
[51] F. Moodi, A. Ramezanianpour, A.S. Safavizadeh, Evaluation of the optimal process of thermal activation of kaolins, Scientia Iranica, 18(4) (2011) 906-912.
[52] A.A. Ramezanianpour, H.B. Jovein, Influence of metakaolin as supplementary cementing material on strength and durability of concretes, Construction and Building materials, 30 (2012) 470-479.
[53] Y. Dhandapani, M. Santhanam, Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance, Cement and Concrete Composites, 84 (2017) 36-47.
[54] G. Mishra, A.C. Emmanuel, S. Bishnoi, Influence of temperature on hydration and microstructure properties of limestone-calcined clay blended cement, Materials and Structures, 52 (2019) 1-13.
[55] V. Shah, A. Parashar, G. Mishra, S. Medepalli, S. Krishnan, S. Bishnoi, Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete, Advances in Cement Research, 32(3) (2020) 101-111.
[56] L. Wang, N.U. Rehman, I. Curosu, Z. Zhu, M.A.B. Beigh, M. Liebscher, L. Chen, D.C. Tsang, S. Hempel, V. Mechtcherine, On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC), Cement and Concrete Research, 144 (2021) 106421.
[57] J. Yu, D.K. Mishra, C. Hu, C.K. Leung, S.P. Shah, Mechanical, environmental and economic performance of sustainable Grade 45 concrete with ultrahigh-volume Limestone-Calcined Clay (LCC), Resources, Conservation and Recycling, 175 (2021) 105846.