تاثیر خاک رس کلسینه منطقه مینودشت استان گلستان و میکروسیلیس بر خواص مکانیکی بتن

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران،

چکیده

حجم گسترده تولید سیمان حدود 5تا8 % انتشار  CO2را شامل می‌شود. آثار سوء زیست محیطی گاز CO2و همچنین نیاز به افزایش مقاومت و دوام بتن منجربه معرفی پوزولان‌ گردید. افزودن متاکائولین باعث کاهش تخلخل در بتن می‌گردد، در نتیجه بتن‌های حاوی متاکائولین در مقایسه با بتن‌های معمولی نفوذپذیری کمتری دارند. در این تحقیق ازخاک رس کلسینه شده به عنوان پوزولان استفاده شد، ابتدا خاک تا دمای 700 درجه سلسیوس حرارت داده می‌شود تا کلسینه شود سپس با پودر سنگ آهک جایگزین سیمان می‌گردد. در این تحقیق 10طرح مخلوط در 2 نسبت آب به مواد سیمانی 0/35 و0/4 ساخته شد. خاک رس کلسینه در درصد‌های صفر، 10 و 20 %، پودر سنگ آهک به ترتیب در درصد‌های صفر، 30 و 20 % و میکروسیلیس نیز به همراه ترکیب خاک ‌و ‌آهک در درصد‌های صفر و7 % وزنی به عنوان مواد پودری جایگزین سیمان شدند. جهت بررسی خواص خاک رس تهیه شده بر روی آن آزمایش XRF و خهت اطمینان از آمورف بودن رس کلسینه آزمایش XRD انجام گرفت. برای بررسی و تحلیل خواص مکانیکی بتن از آزمایش‌های مقاومت فشاری بر روی نمونه‌‌های مکعبی در سنین 3، 7، 28 و90 روزه، مقاومت کششی بر روی نمونه‌‌های استوانه‌‌ای و مقاومت خمشی بر روی نمونه‌های منشوری در سن 28 روزه استفاده شد. با گذشت زمان و رسیدن نمونه ها به سن 90 روزه طرح‌های شامل 20 % رس کلسینه و 20 % آهک Mix3 وMix8  دارای بیشترین مقاومت در طرح‌های پوزولانی هستند و به عنوان طرح‌های بهینه پزولانی معرفی می‌گردند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of Minoodasht region calcined clay of Golestan province and silica fume on the mechanical properties of concrete

نویسندگان [English]

  • Hassan Ghezelsofla
  • Amir Tarighat
faculty of Civil Engineering, shahid rajaee teacher training university
چکیده [English]

In this research, calcined clay was used as pozzolan, first the soil was heated to 700 degrees Celsius to be calcined, then it was replaced with cement with lime powder. In this research, 10 mixed designs were used in 2 ratios of w/c, 0.35, and 0.4. In each proportion of clay at 0, 10, and 20%, limestone powder at 0, 30, and 20%, respectively, and microsilica along with the combination of soil and lime at 0 and 7% by weight as powder materials were replaced by cement. To check the properties of the prepared soil, XRF and XRD tests were performed on it. To investigate and analyze the mechanical properties of concrete from compressive strength tests on 10 cm cube samples at 4 ages of 3, 7, 28, and 90 days, tensile strength on cylindrical samples and flexural strength on prismatic samples at 28 years of age. Fasting was used. Over time and reaching the age of 90 days, designs containing 20% calcined clay and 20% lime Mix3 and Mix8 have more resistance in pozzolanic designs and are introduced as optimal pozzolanic designs.
 

کلیدواژه‌ها [English]

  • Calcined Clay
  • Pozzolan
  • Compressive Strength
  • Tensile Strength
  • Bending Strength
  1. Karen l. scrivener “options for the future of cement” the indian concrete journal  july 2014 vol 88 issue 7
  2. Morsy, M. S., and S. S. Shebl. 2007.“Effect of silica fume and metakaolin pozzolana on the performance of belend cement paste analys fire”. Ceramics – silikaty51(1):40-44
  3. Mangat, E. S., J. M. , B.T. Molloy. 1994.“Microstructure, chloride diffusion and reinforcement corrosion in blended cement paste and concrete”. Cem Concr Compos ;6:73–81.
  4. Habert, G., N. Choupay., J. M. Montel., D. Guillaume., G. Escadeillas. 2008. “Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity”. Cem Concr Res ;38:963–75.
  5. Ghrici M., Kenai S., Said-Mansour M (2007). “Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements”, Cement & Concrete Composites; Vol. 29 Issue 7, 2007, pp. 542–549
  6. Nasir, S.h., F. N. Muhd., U.K. Sadaqat., A. Tehmina. 2015. “Calcined kaolin as cement replacing material and its use in high strength concrete”. Construction and Building Materials(81): 313-323
  7. Kadri, El-Hadj., S. Kenai., K. Ezziane., R. Siddique., and G. Schutter. 2011. “Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar”.Applied clay science53:704-708.
  8. Justice, J. M., L. H. Kennison., B. J. Mohr., S. L. Beckwith., E. McCormick., B. Wigginz., Z. Z. Zhang., K. E. Kurtis. 2005. “Comparision of two metakaolins and a silica fume used as supplementary cementitous materials”.international symposion on utizilation of high-stregth/ high performance concrete. Washington D.C. June. 20-24.
  9. ] Davood Mostofinejad and Mohammad Raeesi "Investigation of the effect of limestone powder on the compressive strength of concrete containing microsilica and optimization of the mixing design using response curves" Isfahan University of Technology December 2013 in persian.
  10. Ramezanianpour, A. A., and H. Bahrami. 2012. “Influence of metakaolin as supplementary as cementing material on strength and durability of concretes”. Construction and building materials30
  11. Konan, K. L., C. Peyratute., A. Smith., J-P. Bonnet., S. S. Rossignol., and S. Oytola. 2009. “Comparison of surface properties between kaolin and metakaolin in concentrated lime solution”. Journal of colloid and interface science339:103-109
  12. Wild, S., J. M. Khatibe., and A. Jones. 1996. “Relative Strength, Pozalanic activity and cement hydration in superplasticised metakaolin concrete”, cement and concrete research26:1537-1544
  13. Siddique, R. 2008. Waste materials and by – product in concrete.patiala india:springer.
  14. Ramlochan, T., M. Tomas., and K. A. Gruber. 2000. “The effect of metakaolin on the alkali-sillica reaction in the concrete”. Cement and concrete research30:339-344.
  15. kostuch, J. A., V. Walters., and T. R. Jones. 2000. “High performance concrete incorporating metakaolin”: A review, concrete 2000, economic and durable concrete through excellent, R. K. Dhir and M. R. Jones, eds., E and FN spon, London,1799-1811.
  16. Mehta, P. K. 1986. Concrete: structure, propertiese, and materials, prentice hall, New jersey.
  17. Samet, B., T. Mnif., and M. Chaabouni. 2007. “Use of kaolinitic clay as a pozzolanic material for cements”: Formulation of blended cement, Cement and concrete composites729:741-749.
  18. Scrivener K, Avet F, Maraghechi H et al. (2019) Impacting factors and properties of limestone calcined clay cements (LC3). Green Materials 7(1): 3–14,https://doi.org/10.1680/jgrma.18.00029
  19. Shashank bishoni , Amit mallik , Oumen Maity, Shiju Joseph and Sreejith Krishnan “Pilot scale manufacture of limestone calcined clay cement” The IndianExperience April 2017
  20. Varga, G. 2007. “The structure of kaolinite and metakaoline”. Epitoanyag,59.
  21. National Geoscience Database of the country, Kaolin, National Geoscience Database in persian http://www.ngdir.ir/GeoportalInfo/PSubjectInfoDetail.asp?PID=281&index=0                                     
  22. AlejandraTironiaMónica A.TrezzaaAlberto N.ScianbEdgardo F.Irassara Kaolinitic calcined clays: “Factors affecting its performance as pozzolans”.
  23. ASTM (American Society for Testing and Materials) Standard C33, 2003, "Specification for Concrete Aggregates," ASTM International, West Conshohocken, PA, 2003, DOI: 10.1520/C0033-03, www.astm.org.
  24. Irajian Mahmoud, 2010, the use of additives in dam construction projects, the fourth international conference on dam construction, Iran, Tehran in persian.
  25. ASTM (American Society for Testing and Materials) C39. 2003. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM Publication.
  26. ASTM (American Society for Testing and Materials) C496. 2003. Standard Test Method fornSplitting Tensile Strength of Cylindrical Concrete Specimens, ASTM Publication.
  27. Mostofi-Nejad, Dawood (2014). Reinforced concrete structures. Edition 2. The first volume. Isfahan, Arkan Danesh Publications in persian.
  28. ASTM C78 / C78M-18, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, 2018, astm.org