بهینه سازی پارامترهای لیچینگ روی و حذف آرسنیک پسماندهای ذوب سرب از محیط اسیدی بوسیله یون فرو و پرمنگنات پتاسیم

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی امیرکبیر، دانشکده مهندسی معدن، تهران، ایران

چکیده

این پژوهش به بررسی و بهینه‌سازی فرآیند بازیافت روی از پسماند پیرومتالورژیکی کوره ذوب کالدو سرب کارخانه‌ای در زنجان پرداخته است. آنالیز شیمیایی نشان داد که پسماند حاوی 7/14 درصد روی و 4 درصد آرسنیک است. هدف اصلی این مطالعه، بازیابی روی به عنوان یک فلز ارزشمند و مدیریت آرسنیک به عنوان یک آلاینده خطرناک می‌باشد. برای دستیابی به این هدف، روش لیچینگ اسیدی مورد بررسی قرار گرفت. لیچینگ اسیدی با اسید سولفوریک در شرایط بهینه (غلظت 0/75 مولار، دمای 75 درجه سانتی‌گراد، زمان 60 دقیقه و نسبت مایع به جامد 6) منجر به بازیابی 99 درصد روی و 50 درصد آرسنیک شد. این نتایج نشان‌دهنده کارایی بالای روش لیچینگ اسیدی در استخراج روی از پسماند است. برای حذف آرسنیک از محلول حاصل از لیچینگ، روش ترسیب با استفاده از سولفات آهن و اکسنده‌های مختلف مورد مطالعه قرار گرفت. در میان اکسنده‌های بررسی شده، پرمنگنات پتاسیم با راندمان 99/94 درصد در شرایط بهینه (نسبت سولفات آهن به پرمنگنات پتاسیم 5:1، زمان 60 دقیقه، دمای محیط و pH  برایر 4/5) بهترین عملکرد را از خود نشان داد. ترکیب فرآیند لیچینگ اسیدی و ترسیب آرسنیک، راهکاری مؤثر برای استخراج انتخابی روی و حذف آرسنیک ارائه داد. این روش ترکیبی نه تنها امکان بازیابی روی با خلوص بالا را فراهم می‌کند، بلکه به کاهش آلودگی‌های زیست‌محیطی ناشی از آرسنیک نیز کمک می‌نماید. این مطالعه گامی مهم در توسعه روش‌های کارآمد و پایدار برای بازیافت فلزات از پسماندهای صنعتی برداشته و می‌تواند الگویی برای پروژه‌های مشابه در صنایع فلزی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Zinc Leaching Parameters and Arsenic Removal from Lead Smelting Residues in an Acidic Environment Using Ferrous Ion and Potassium Permanganate

نویسندگان [English]

  • Mohammad Hossein Davoudi
  • Hossein Kamran Haghighi
Department of Mining Engineering, Amirkabir University of Technology, Tehran
چکیده [English]

This research investigates and optimizes the zinc recovery process from the pyrometallurgical residue of a Kaldo lead smelting furnace in Zanjan province. Chemical analysis revealed that the waste contains 14.7% zinc and 4% arsenic. The primary objectives of this study are to recover zinc as a valuable metal and remove arsenic as a hazardous contaminant. To achieve these goals, first, an acidic leaching method was examined. Under optimal conditions (0.75 M concentration, 75°C temperature, 60 min duration, and a 6:1 liquid-to-solid ratio), acidic leaching with sulfuric acid resulted in zinc and arsenic recovery of 99% and 50%, respectively. These results demonstrate the high efficiency of the acidic leaching in extracting zinc from the waste. For arsenic removal from the leaching solution, a precipitation method using ferrous sulfate and various oxidants was studied. Among the oxidants examined, potassium permanganate showed the best performance with a 99.94% removal recovery under optimal conditions (5:1 ferrous sulfate to potassium permanganate ratio, 60 min duration, ambient temperature, and pH 4.5). The combination of acidic leaching and arsenic precipitation processes provides an effective approach for selective zinc extraction and arsenic removal. This combined method not only enables high-purity zinc recovery but also contributes to reducing environmental pollution caused by arsenic. This study marks a significant step in developing efficient and sustainable methods for metal recovery from industrial waste and can serve as a model for similar projects in the metallurgical industry.

کلیدواژه‌ها [English]

  • Lead Residue
  • Leaching
  • Zinc Recycling
  • Arsenic Precipitation
  • Kaldo
[1] I. Daigo, S. Osako, Y. Adachi, Y. Matsuno, Time-series analysis of global zinc demand associated with steel, Resources, conservation and recycling, 82 (2014) 35-40.
[2] E. Matinde, G.S. Simate, S. Ndlovu, Mining and metallurgical wastes: a review of recycling and re-use practices, Journal of the Southern African institute of mining and metallurgy, 118(8) (2018) 825-844.
[3] T. Bakalár, H. Pavolová, Z. Hajduová, R. Lacko, K. Kyšeľa, Metal recovery from municipal solid waste incineration fly ash as a tool of circular economy, Journal of Cleaner Production, 302 (2021) 126977.
[4] R. Šajn, I. Ristović, B. Čeplak, Mining and Metallurgical Waste as Potential Secondary Sources of Metals—A Case Study for the West Balkan Region, Minerals, 12(5) (2022) 547.
[5] H.Y. Sohn, M. Olivas-Martinez, Lead and zinc production, in: Treatise on Process Metallurgy, Elsevier, 2024, pp. 605-624.
[6] Y. Zhang, X. Feng, L. Qian, J. Luan, B. Jin, Separation of arsenic and extraction of zinc and copper from high-arsenic copper smelting dusts by alkali leaching followed by sulfuric acid leaching, Journal of Environmental Chemical Engineering, 9(5) (2021) 105997.
[7] Y. Wang, C. Lv, L. Xiao, G. Fu, Y. Liu, S. Ye, Y. Chen, Arsenic removal from alkaline leaching solution using Fe (III) precipitation, Environmental technology, 40(13) (2019) 1714-1720.
[8] J. Mocellin, G. Mercier, J.-L. Morel, P. Charbonnier, J.-F. Blais, M.-O. Simonnot, Recovery of zinc and manganese from pyrometallurgy sludge by hydrometallurgical processing, Journal of Cleaner Production, 168 (2017) 311-321.
[9] Y. Zhang, B. Jin, Y. Huang, Q. Song, C. Wang, Two-stage leaching of zinc and copper from arsenic-rich copper smelting hazardous dusts after alkali leaching of arsenic, Separation and Purification Technology, 220 (2019) 250-258.
[10] M. Barakat, Recovery of zinc from zinc ash and flue dust by pyrometallurgical processing, in: 4th Int. Symposium Recycling of Metals and Engineered Materials, 2000, pp. 211-223.
[11] T. Shi, J. He, R. Zhu, B. Yang, B. Xu, Arsenic removal from arsenic–containing copper dust by vacuum carbothermal reduction–vulcanization roasting, Vacuum, 189 (2021) 110213.
[12] L. Guo, J. Lan, Y. Du, T.C. Zhang, D. Du, Microwave-enhanced selective leaching of arsenic from copper smelting flue dusts, Journal of hazardous materials, 386 (2020) 121964.
[13] H. Nabipour, Y. Hu, Layered zinc hydroxide as vehicle for drug delivery systems: a critical review, Journal of Porous Materials, (2022) 1-16.
[14] M.C.F. Magalhães, Arsenic. An environmental problem limited by solubility, Pure and Applied Chemistry, 74(10) (2002) 1843-1850.
[15] Y.-C. Lai, W.-J. Lee, K.-L. Huang, C.-M. Wu, Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process, Journal of hazardous materials, 154(1-3) (2008) 588-594.
[16] F.M. Santos, P.S. Pina, R. Porcaro, V.A. Oliveira, C.A. Silva, V.A. Leão, The kinetics of zinc silicate leaching in sodium hydroxide, Hydrometallurgy, 102(1-4) (2010) 43-49.
[17] F. Faraji, A. Alizadeh, F. Rashchi, N. Mostoufi, Kinetics of leaching: A review, Reviews in Chemical Engineering, 38(2) (2022) 113-148.
[18] T. Graedel, Corrosion mechanisms for zinc exposed to the atmosphere, Journal of the Electrochemical Society, 136(4) (1989) 193C.
[19] B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries, ChemSusChem, 9(20) (2016) 2948-2956.
[20] J. Nie, Z. Ren, L. Xu, S. Lin, F. Zhan, X. Chen, Z.L. Wang, Probing contact‐electrification‐induced electron and ion transfers at a liquid–solid interface, Advanced Materials, 32(2) (2020) 1905696.
[21] G. Bai, P.M. Armenante, Hydrodynamic, mass transfer, and dissolution effects induced by tablet location during dissolution testing, Journal of pharmaceutical sciences, 98(4) (2009) 1511-1531.
[22] Y. Wang, J.G. Brasseur, Enhancement of mass transfer from particles by local shear‐rate and correlations with application to drug dissolution, AIChE Journal, 65(8) (2019) e16617.
[23] A. Moezzi, M. Cortie, A.M. McDonagh, Formation of Zinc Hydroxide Nitrate by H+‐Catalyzed Dissolution‐Precipitation, European Journal of Inorganic Chemistry, 2013(8) (2013) 1326-1335.
[24] A. Krężel, W. Maret, The biological inorganic chemistry of zinc ions, Archives of biochemistry and biophysics, 611 (2016) 3-19.
[25] Y. Wang, K. Zheng, H. Guo, L. Tian, Y. He, X. Wang, T. Zhu, P. Sun, Y. Liu, Potassium permanganate-based advanced oxidation processes for wastewater decontamination and sludge treatment: a review, Chemical Engineering Journal, 452 (2023) 139529.
[26] A. Shahnazi, S. Firoozi, D.H. Fatmehsari, Selective leaching of arsenic from copper converter flue dust by Na2S and its stabilization with Fe2 (SO4) 3, Transactions of Nonferrous Metals Society of China, 30(6) (2020) 1674-1686.
[27] L. Na, F. Maohong, J. Van Leeuwen, B. Saha, Y. Hongqun, C. Huang, Oxidation of As (III) by potassium permanganate, Journal of environmental sciences, 19(7) (2007) 783-786.
[28] S. Sorlini, F. Gialdini, Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine, Water Research, 44(19) (2010) 5653-5659.
[29] X. Xie, W. Zhao, Y. Hu, X. Xu, H. Cheng, Permanganate oxidation and ferric ion precipitation (KMnO4-Fe (III)) process for treating phenylarsenic compounds, Chemical Engineering Journal, 357 (2019) 600-610.
[30] W. Zhang, P. Singh, E. Paling, S. Delides, Arsenic removal from contaminated water by natural iron ores, Minerals engineering, 17(4) (2004) 517-524.
[31] S. Aredes, Arsenic removal by iron oxides, University of British Columbia, 2005.
[32] X. Guan, H. Dong, J. Ma, L. Jiang, Removal of arsenic from water: Effects of competing anions on As (III) removal in KMnO4–Fe (II) process, Water research, 43(15) (2009) 3891-3899.