چارچوب یکپارچه مدل‌سازی اطلاعات ساختمان و هزینه چرخه عمر برای طراحی لرزه‌ای سازه‌های فولادی بلندمرتبه

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

به طورکلی استراتژی غالب در طراحی سازه‌ها کاهش وزن اولیه سازه می‌‌باشد، و البته هزینه‌‌های محتمل آینده نظیر خرابی‌‌های ناشی از زلزله عموما نادیده گرفته می‌شوند. با توجه به تنوع ساختمان های شهری از منظر منظمی و نامنظمی، بررسی هزینه چرخه عمر آنها حائز اهمیت است؛ این مهم هنوز به طور کامل در تحقیقات گذشته مورد بررسی واقع نشده است. از سوی دیگر، فقدان بکارگیری مدلسازی اطلاعات ساختمان در پژوهش‌‌های پیشین برای استفاده در طراحی مبتنی بر هزینه چرخه عمر سازه‌‌ها مشهود است. این تحقیق با هدف برجسته کردن تأثیر نامنظمی بر هزینه چرخه عمر سازه‌ها، چارچوبی یکپارچه مبتنی بر بهینه‌‌سازی طراحی لرزه‌‌ای سازه‌‌ها و با استفاده از ظرفیت‌‌های هزینه چرخه عمر و مدلسازی اطلاعات ساختمان ارائه می‌کند. بدین منظور یک محیط اشتراکی در نرم افزار متلب ایجاد، اطلاعات بین نرم‌‌افزارهای رویت، ایتبس و اکسل تبادل و بهینه‌سازی با استفاده از NSGA-II برای موازنه هزینه اولیه و هزینه چرخه عمر صورت می‌گیرد. ابزارهای مدلسازی اطلاعات ساختمان می‌توانند تا حدود زیادی محدویت‌‌های تحلیل هزینه چرخه عمر مانند زمان تبادل اطلاعات را کاهش و دقت و سرعت محاسبات را افزایش دهد. با مدلسازی شش مدل در دو تیپ منظم و نامنظم، چارچوب پژوهش و تفاوت رفتار سازه‌‌ها مورد مطالعه قرار می‌‌گیرد. نتایج تحقیق نشان داد که هزینه‌‌های غیرمستقیم سازه‌های نامنظم نسبت به منظم بیشتر هستند. علاوه بر این، یافته‌ها نشان می‌دهند که کاهش هزینه‌‌های چرخه عمر سازه‌های نامنظم نسبت به منظم نیازمند افزایش درصد هزینه اولیه بالاتری هستند. بعنوان مثال، برای سازه 13 طبقه منظم و نامنظم، افزایش 17٪ هزینه اولیه به ترتیب منجر به کاهش 48٪ و 40٪ هزینه چرخه عمر آنها می‌‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Integrated BIM-Based Life Cycle-Oriented Framework for Seismic Design of High-Rise Steel Structures

نویسندگان [English]

  • Sajad Taheri Jebelli
  • Behrouz Behnam
School of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

In general, the dominant strategy in the design of structures is to reduce the initial weight of the structure. Of course, the possible future costs such as damages caused by earthquakes are generally ignored. Considering the variety of urban buildings from the point of view of regularity and irregularity, it is important to examine their life cycle cost (LCC); this issue has not yet been fully explored in previous research. On the one hand, the lack of utilization of building information modeling (BIM) in previous structural design-based LCC research is evident. This research aims to highlight the impact of irregularity on the LCC of structures by providing an integrated framework based on the seismic design optimization of structures by using LCC and BIM capacities. For this, a shared environment is created in MATLAB software, information is exchanged between Revit, Etabs, and Excel software, and optimization is done using NSGA-II for establishing a trade-off between initial cost and LCC. BIM tools can greatly reduce the limitations of LCC analysis, such as information exchange time, and increase the accuracy and speed of calculations. By modeling six models in two regular and irregular types, the framework of the research and the difference in the behavior of the structures are examined. The results showed that the indirect costs of irregular structures are more than the regular ones. In addition, the findings show that reducing the LCC of irregular structures compared to regular ones requires a higher initial cost percentage. For example, for regular and irregular 13-story structures, a 17% increase in the initial cost leads to a 48% and 40% reduction in their LCC, respectively.

کلیدواژه‌ها [English]

  • Irregular Structures
  • Building Information Modeling
  • Life Cycle Cost
  • Performance-Based Design
  • Multi-Objective Optimization
[1] S.H. Sanati, A. Karamodin, Optimum seismic design of frame structures with and without metallic yielding dampers considering life-cycle cost, Journal of Building Engineering, 76 (2023).
[2] C. Raposo, F. Rodrigues, H. Rodrigues, BIM-based LCA assessment of seismic strengthening solutions for reinforced concrete precast industrial buildings, Innovative Infrastructure Solutions, 4(1) (2019).
[3] D.M.A. Morsi, W.S.E. Ismaeel, A. Ehab, A.A.E. Othman, BIM-based life cycle assessment for different structural system scenarios of a residential building, Ain Shams Engineering Journal, 13(6) (2022).
[4] UNECE, Share of construction in GDP, in, United Nations Economic Commission for Europe.
[5] Mehrnews, The contribution of the construction sector to the GDP, in, Mehrnews, 2021 (in Persian).
[6] B. Behnam, F. Shojaei, A Risk Index for Mitigating Earthquake Damage in Urban Structures, in:  Integrating Disaster Science and Management, 2018, pp. 3-25.
[7] H. Jiang, Y. Huang, L. He, T. Huang, S. Zhang, Seismic performance of RC frame-shear wall structures with vertical setback, Structures, 33 (2021) 4203-4217.
[8] T. Vasishta, M. Hashem Mehany, J. Killingsworth, Comparative life cycle assesment (LCA) and life cycle cost analysis (LCCA) of precast and cast–in–place buildings in United States, Journal of Building Engineering, 67 (2023).
[9] J. Li, F. Xiao, L. Zhang, S.N. Amirkhanian, Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review, Journal of Cleaner Production, 233 (2019) 1182-1206.
[10] S. Pezeshk, C.V. Camp, D. Chen, Design of Nonlinear Framed Structures Using Genetic Optimization, Journal of Structural Engineering, 126(3) (2000) 382-388.
[11] J.M. Galibourg, Public works and overall cost. A current approach for public construction. Guide for project owners, for a 'total cost' approach to public construction, in, Interministerial Mission for the Quality of Public Construction, Paris, 2006.
[12] Y.K. Wen, Y.J. Kang, Minimum building life-cycle cost design criteria. I: Methodology, Journal of Structural Engineering, 127(3) (2001) 330-337.
[13] A.H.S. Ang, J.-C. Lee, Cost optimal design of R/C buildings, Reliability Engineering & System Safety, 73(3) (2001) 233-238.
[14] K.C. Sarma, H. Adeli, Life‐cycle cost optimization of steel structures, International Journal for Numerical Methods in Engineering, 55(12) (2002) 1451-1462.
[15] G. Li, G. Cheng, Damage-reduction-based structural optimum design for seismic RC frames, Structural and Multidisciplinary Optimization, 25(4) (2003) 294-306.
[16] M. Liu, Y.K. Wen, S.A. Burns, Life cycle cost oriented seismic design optimization of steel moment frame structures with risk-taking preference, Engineering Structures, 26(10) (2004) 1407-1421.
[17] H. Shin, M.P. Singh, Minimum failure cost-based energy dissipation system designs for buildings in three seismic regions – Part II: Application to viscous dampers, Engineering Structures, 74 (2014) 275-282.
[18] M. Heydari, G. Heravi, A BIM-based framework for optimization and assessment of buildings' cost and carbon emissions, Journal of Building Engineering, 79 (2023).
[19] Q. Tushar, M.A. Bhuiyan, G. Zhang, T. Maqsood, An integrated approach of BIM-enabled LCA and energy simulation: The optimized solution towards sustainable development, Journal of Cleaner Production, 289 (2021).
[20] M. Sandberg, J. Mukkavaara, F. Shadram, T. Olofsson, Multidisciplinary optimization of life-cycle energy and cost using a BIM-based master model, Sustainability, 11(1) (2019).
[21] S.D. Datta, M. Islam, M.H. Rahman Sobuz, S. Ahmed, M. Kar, Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review, Heliyon, 10(5) (2024) e26888.
[22] X. Gao, P. Pishdad-Bozorgi, BIM-enabled facilities operation and maintenance: A review, Advanced Engineering Informatics, 39 (2019) 227-247.
[23] M.A.H. Rad, F. Jalaei, A. Golpour, S.S.H. Varzande, G. Guest, BIM-based approach to conduct life cycle cost analysis of resilient buildings at the conceptual stage, Automation in Construction, 123 (2021).
[24] A. Hollberg, G. Genova, G. Habert, Evaluation of BIM-based LCA results for building design, Automation in Construction, 109 (2020).
[25] D. Zhuang, X. Zhang, Y. Lu, C. Wang, X. Jin, X. Zhou, X. Shi, A performance data integrated BIM framework for building life-cycle energy efficiency and environmental optimization design, Automation in Construction, 127 (2021).
[26] B.S. Dhillon, Life cycle costing for engineers, CRC Press, 2009.
[27] R. Santos, A.A. Costa, J.D. Silvestre, L. Pyl, Integration of LCA and LCC analysis within a BIM-based environment, Automation in Construction, 103 (2019) 127-149.
[28] R.L. Haupt, S.E. Haupt, Practical genetic algorithms, John Wiley & Sons, 2004.
[29] J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press, 1992.
[30] Y. Yonezawa, T. Kikuchi, Ecological algorithm for optimal ordering used by collective honey bee behavior, in:  MHS'96 Proceedings of the Seventh International Symposium on Micro Machine and Human Science, IEEE, 1996, pp. 249-256.
[31] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Trans Syst Man Cybern B Cybern, 26(1) (1996) 29-41.
[32] S. Bakhshinezhad, M. Mohebbi, Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II, Structures, 24 (2020) 678-689.
[33] M. Liu, S.A. Burns, Y.K. Wen, Multiobjective optimization for performance‐based seismic design of steel moment frame structures, Earthquake Engineering & Structural Dynamics, 34(3) (2004) 289-306.
[34] A. Kaveh, K. Laknejadi, B. Alinejad, Performance-based multi-objective optimization of large steel structures, Acta Mechanica, 223(2) (2011) 355-369.
[35] M. Charkhtab Basim, H. E. Estekanchi, A. Vafai, A methodology for value based seismic design of structures by the endurance time method, Scientia Iranica, 23(6) (2016) 2514-2527.
[36] H.S. Park, D.C. Lee, B.K. Oh, S.W. Choi, Y. Kim, Performance-based multiobjective optimal seismic retrofit method for a steel moment-resisting frame considering the life-cycle cost, Mathematical Problems in Engineering, 2014 (2014) 1-14.
[37] H. Shin, M.P. Singh, Minimum life-cycle cost-based optimal design of yielding metallic devices for seismic loads, Engineering Structures, 144 (2017) 174-184.
[38] U. Vitiello, V. Ciotta, A. Salzano, D. Asprone, G. Manfredi, E. Cosenza, BIM-based approach for the cost-optimization of seismic retrofit strategies on existing buildings, Automation in Construction, 98 (2019) 90-101.
[39] M. Fragiadakis, N.D. Lagaros, M. Papadrakakis, Performance-based multiobjective optimum design of steel structures considering life-cycle cost, Structural and Multidisciplinary Optimization, 32(1) (2006) 1-11.
[40] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2) (2002) 182-197.
[41] BSSC, NEHRP recommended provisions for seismic regulations for new buildings and other structures (FEMA 450), Part 1: Provisions, NIBS (National Institute of Building Sciences), Washington, DC, USA, 2003.
[42] C.A. Cornell, H. Krawinkler, Progress and challenges in seismic performance assessment, PEER newsletter, 3(2) (2000) 1-3.
[43] A. Homaifar, C.X. Qi, S.H. Lai, Constrained optimization via genetic algorithms, Simulation, 62(4) (2016) 242-253.
[44] ASCE, Seismic evaluation and retrofit of existing buildings, American Society of Civil Engineers, 2017.
[45] Y.K. Wen, Y.J. Kang, Minimum building life-cycle cost design criteria. II: Applications, Journal of Structural Engineering, 127(3) (2001) 338-346.
[46] G. Abdoli, Estimation of social discount rate for Iran, Economic Research Review, 10(3) (2009) 135-156 (in Persian).
[47] ATC, ATC-13: Earthquake damage evaluation data for California, Applied Technology Council: Redwood City, CA, USA, 1985.
[48] M.-C. Lin, H.P. Tserng, S.-P. Ho, D.-L. Young, Developing a construction-duration model based on a historical dataset for building project, Journal of Civil Engineering and Management, 17(4) (2011) 529-539.
[49] O. Dursun, C. Stoy, Determinants of construction duration for building projects in Germany, Engineering, Construction and Architectural Management, 19(4) (2012) 444-468.
[50] J.A. Ujong, E.M. Mbadike, G.U. Alaneme, Prediction of cost and duration of building construction using artificial neural network, Asian Journal of Civil Engineering, 23(7) (2022) 1117-1139.
[51] F. Shojaei, F. Tabatabai zavareh, F. Begdeli, S. Mirsaeidi, Z. Khazaei, F. Azizi, An overview of the health service provision of the Social Security Organization, Social Security Organization Research Institute, 2021 (in Persian).
[52] D.P. Rice, B.S. Cooper, The economic value of human life, Am J Public Health Nations Health, 57(11) (1967) 1954-1966.
[53] E.J. Mishan, Evaluation of life and limb: a theoretical approach, Journal of Political Economy, 79(4) (1971) 687-705.
[54] W. Max, D.P. Rice, H.-Y. Sung, M. Michel, Valuing human life: estimating the present value of lifetime earnings, 2000,  (2004).
[55] T.R. Miller, Variations between countries in values of statistical life, Journal of transport economics and policy,  (2000) 169-188.
[56] M. Rezaei, H. Ranjbardar, H. Talkhabi, Evaluation of sustainability indicators of Tehran metropolis based on sustainable development, in:  The first national conference on architecture, civil engineering and urban environment, Hamedan, Iran, 2014 (in Persian).
[57] BSSC, A benefit-cost model for the seismic rehabilitation of buildings (FEMA 227), FEMA (USA Federal Emergency Management Agency), Washington, D.C., USA., 1992.
[58] D.P. Soni, B.B. Mistry, Qualitative review of seismic response of vertically irregular building frames, ISET Journal of Earthquake Technology, Technical Note, 43(4) (2006) 121-132.
[59] H.-H. Tsang, S. Yaghmaei-Sabegh, P. Anbazhagan, M. Neaz Sheikh, A checking method for probabilistic seismic-hazard assessment: case studies on three cities, Natural Hazards, 58(1) (2010) 67-84.
[60] M. Inel, H.B. Ozmen, Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings, Engineering Structures, 28(11) (2006) 1494-1502.
[61] K. Haugbølle, L.M. Raffnsøe, Rethinking life cycle cost drivers for sustainable office buildings in Denmark, Facilities, 37(9/10) (2019) 624-638.