بررسی عددی و آزمایشگاهی مسیر جت‌‌های ریزشی آزاد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران

2 استاد، گروه علوم و مهندسی آب، دانشگاه تبریز

چکیده

جریان آب ورودی از روی سدها دارای انرژی زیادی است که در صورت عدم اتلاف این انرژی، جریان آب عبوری می‌‌تواند خسارات جبران ناپذیری را به سد و سازه‌‌های پایین دست آن وارد کند. یکی از راه‌‌های اتلاف این انرژی اضافی، خروج آب به صورت جت‌‌های ریزشی به حوضچه‌‌های استغراق است. جت‌‌های آب ریزشی اغلب باعث فرسایش و آبشستگی پایین‌‌دست سازه می‌‌شوند و به تکیه‌‌گاه‌‌ها و به کانال پایین‌‌دست رودخانه تاثیر می‌‌گذارند. در تحقیق حاضر به بررسی عددی و آزمایشگاهی خط مسیر جریان خروجی از جت‌‌های ریزشی آزاد پرداخته شد. برای شبیه‌‌سازی عددی از نرم افزار انسیس فلوئنت استفاده شد و کار آزمایشگاهی در آزمایشگاه هیدرولیک انجام گرفت. نتایج نشان داد که برد جت ریزشی آزاد در کار آزمایشگاهی کمتر از مقدار محاسبه شده آن با استفاده از روابط پرتابه  و نمونه شبیه‌‌سازی شده با استفاده از نرم افزار انسیس فلوئنت به دلیل مقاومت هوا می‌‌باشد. به ترتیب معادلات پرتابه و مسیر شبیه‌‌سازی شده در نرم افزار انسیس فلوئنت به طور متوسط خطای 20/6 و 25/5 درصدی نسبت به داده‌‌های آزمایشگاهی دارند. از آنجایی که هیچ یک از معادلات ارائه شده برای محاسبه مسیر جت‌‌های ریزشی با استفاده از نتایج آزمایشگاهی به دست نیامده‌‌اند و مقاومت هوا را در نظر نگرفته‌‌اند، لذا در محاسبه مسیر حرکت جت ریزشی دارای خطا هستند. برای  رفع این خطا، در تحقیق حاضر دو معادله‌‌ برای محاسبه مسیر حرکت جت ریزشی آزاد ارائه شده است که به ترتیب دارای خطای نسبی 3/02 و 9/14 درصدی می‌‌باشند. این روابط، خطای محاسبه مسیر حرکت جت ریزشی آزاد را به صورت قابل ملاحظه‌‌ای کاهش می‌‌دهند. نتایج نشان داد که با کاهش عرض مقطع خروجی جت ریزشی آزاد و افزایش بار آبی گذرنده از روی سرریز سد، جت ریزشی آزاد در فاصله دورتری از بدنه سد به زمین می‌‌رسد. همچنین نتایج شبیه‌‌سازی نشان داد که سرعت جریان آب با افزایش 247 درصدی نسبت به سرعت در انتهای تاج سرریز سد، به زمین برخورد می‌‌کند که مستلزم توجه بیشتر در طراحی حوضچه‌‌های آرامش در انتهای سدها می‌‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical and experimental study of trajectory for free falling jets

نویسندگان [English]

  • Ali Taheri aghdam 1
  • Ali Hossein Zadeh Dalir 2
  • farzin Salmasi 1
  • Akram Abbaspour 1
1 Water Engineering, Department, University of Tabriz, Tabriz-Iran
2 University of Tabriz,, Department of Water Engineering
چکیده [English]

The water flow over the dam spillways has a lot of energy and if this energy is not dissipated, the flowing water can cause irreparable damage to the dam and downstream structures. One way to dissipate this extra energy is to get water out of the jets into the plunging pool. Water-free jets often cause erosion and scouring downstream of the structure, affecting the abutments and the downstream channel. In the present study, the trajectory of free-falling jets is investigated numerically and experimentally. Ansys-Fluent software is used for numerical simulation and laboratory work is carried out in the hydraulic laboratory. The results showed that the domain of free falling jet in laboratory work is less than its calculated value using the projectile equations and the sample simulated using Ansys-Fluent software is due to air resistance. The equations of the projectile prediction and the simulated path in Ansys-Fluent have an error of 20.6% and 25.5%, respectively, compared to the laboratory data. Since none of the previously presented equations for calculating the path of falling jets were obtained using laboratory results and did not consider air resistance, therefore, they have errors in calculating the path of falling jets. In the present study, two equations have been presented to calculate the path of the free-falling jet, which have a relative error of 3.02% and 9.14%, respectively. These relationships significantly reduce the error of calculating the path of the free-falling jet. By reducing the outlet cross-section of the free-falling jet and increasing the head passing through the dam spillway, the free-falling jet reaches the ground at a greater distance from the dam body. Since none of the equations presented for calculating the trajectory of jets have been obtained using laboratory results and have not considered air resistance, so they have an average error of 21% in the estimation of trajectory jets. In the present study, in addition to providing equations to calculate the trajectory of a free-falling jet, the air resistance also entered the main equation of the projectile by fitting an equation (using laboratory data). The simulation results also showed that the water flow velocity with a 247% increase compared to the velocity at the end of the dam overflow, hits the ground, which requires more attention in the design of the stilling basin at the end of the dam.

کلیدواژه‌ها [English]

  • Free Jet
  • Plunging Pool
  • Trajectory
  • Projectile Equation
  • Air Resistance
[1] A. Salemnia. M. Fathi Moghadam, “Investigation of Break up Length of free Water Jet”, Iranian Journal of Irrigation and Drainage No. 2, Vol. 13, 309-318, (2019). (In Persian)
[2] T. L. Wahl, K.H. Frizell, E. A. Cohen, “Computing the Trajectory of Free Jets”. J. Hydraulic. Eng., 134_2_, 256-260, (2008).
[3] A. Taheri Aghdam, F. Salmasi, A., Hosseinzade Dalir, & A. Abbaspour, “Experimental and Numerical Investigation of the Trajectory of Outlet Jets through the Pressurized Discharge Gates of Reservoir Dams”. Journal of Water and Sustainable Development, 10(3), 109-120. (2023) doi: 10.22067/jwsd. v10i3.2301-1207. (In Persian).
[4]  S. Salmanzadeh,  J.  Ahadiyan,  “Distribution limit of jet flow in the same and dissimilar phases of ambient fluid”,  Irrigation Sciences And Engineering,  No. 1, Vol. 36, 93 – 107, (2016). (In Persian).
[5] H. Rouse, “Discharge characteristics of the free overfall”, Civ.Eng. (N.Y.), 6, 257, (1936).
[6] F. M. Henderson, “Open channel flow, MacMillan”, New York,191–197, (1966).
[7] J. W. Delleur, J. C. I. Dooge, & K. W. Gent, “Influence of slope and roughness on the free overfall”, Proc. American Society of Civil Engineers, Vol. 82, No. HY4 Paper No. 1038, 1038-30–1038-35, (1956).
[8] A. Taheri Aghdam, “experimental investigation of the breakup length of free falling jets”.  architecture, civil engineering, earth sciences and healthy environment،Hamadan،https://civilica.com/doc/1893232. (2024). (In Persian).
[9] M. Mazidi Sharaf Abadi, SH. Talebi, “Experimental study of water fall jet discretization”, 20th Annual Conference on Mechanical Engineering, ISME20_239, (2012). (In Persian).
[10] R. Daneshfaraz, R. Norouzi, H. Abbaszadeh, & H. M. Azamathulla, “Theoretical and experimental analysis of applicability of sill with different widths on the gate discharge coefficients”. Water Supply, 22(10), 7767-7781. (2022). https://doi.org/10.2166/ws.2022.354
[11] Anonymous, ANSYS FLUENT Tutorial Guide. (2015).
[12] M.  Hamzei, M. Javan, A. Eghbalzadeh, “The effect of the upstream and downstream face slopes of the broad crested weirs on the flow characteristics”, Journal of Water and Soil Conservation; 20(2): 23-43, (2012). (In Persian).
[13] F. Salmasi, B. Nourani, H. Arvanaghi, F. Rezaei, “Undular Flow Conditions and Discharge Coefficient in Rectangular Broad-Crested Weirs”, Amirkabir Journal of Civil Engineering, 54(1), 8-8. doi: 10.22060/ceej.2021.18314.6830, (2022). (In Persian).
[14] R. Daneshfaraz, R. Norouzi, H. Abbaszadeh, A. Kuriqi, & S. Difrancesco, “Influence of sill on the ‎hydraulic regime in sluice gates: an experimental and numerical analysis”. Fluids, 7(7), 244. (2022). https://doi.org/10.3390/fluids7070244
[15] R. Daneshfaraz, R. Norouzi, H. Abbaszadeh, “Effect of geometric shapes of chimney weir on discharge coefficient”. Journal of Applied Water Engineering and Research, 12(1), 27-38. (2024).  DOI: 10.1080/23249676.2023.2192977.
[16] Bureau of Reclamation, “Design of gravity dams”, United States Department of the Interior, United States Government Printing Office, Denver, 198–199, (1976).
[17] Bureau of Reclamation, “Design of small dams”, 1st Ed., United States Department of the Interior, United States Government Printing Office, Denver, 282–291, (1960).
[18] Bureau of Reclamation, “Design of gravity dams”, United States Department of the Interior, United States Government Printing Office, Denver, 198–199, (1976).
[19] Bureau of Reclamation, “Design of arch dams”, United States Department of the Interior, United States Government Printing Office, Denver, 312–313, (1977).
[20] G. W. Annandale, “Scour technology: Mechanics and engineering practice”, McGraw-Hill, New York, 146–151. (2006).
 [21] U.S. Army Corps of Engineers, “High overflow dams, energy dissipators”, flip bucket throw distance.” Hydraulic design criteria, sheet 112-8, Coastal and Hydraulics Laboratory, Engineer Research and Development Center, Waterways Experiment Station, Vicksburg, Miss, (1964).
[22] W. Hirt, B.D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput, Phys, 39 :201–225. (1981).
 [23] A. Bayon, D. Valero, “Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump”, Environ. Model. Softw., 80:322-335. (2016).
[24] P. Toro, F. Bombardelli, J. Paik, “Detached eddy simulation of the no narrated skimming flow over a stepped spillway”, J. Hydraul. Eng., 143 (2017).
[25] K. Samani, A.R.S, Bagheri, “Design of channels and water conveyance structures”. Arkan Danesh Publications, pp 264–269. (2014). (In Persian).
[26] A. Taheri Aghdam, F. Salmasi, A. Hossein Zadeh Dalir, A. Abbaspour, J. Abraham. Experimental and numerical investigation of the trajectories of free and pressurized jets through storage dams, Water Supply. 23(3), 1297–1318, 2023.
[27] A. Taheri Aghdam, A. Hossein Zadeh Dalir, F. Salmasi, A. Abbaspour, J. Abraham. Numerical and Experimental Study of Trajectory for Free-Falling Jets, Iranian journal of science and technology, transactions of civil engineering, 9(5), 62-70, 2023.