توسعه مدل تمایل به تخلف رانندگان تاکسی و تصادفات بر اساس ویژگی‌های رفتار برنامه‌ریزی‌شده و با استفاده از مدل‌سازی معادلات ساختاری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه عمران-برنامه‌ریزی حمل‌ونقل، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

چکیده

از نظریه رفتار برنامه‌ریزی‌شده در مطالعات گوناگون برای شناخت رفتار انسان در موارد مختلف ترافیکی از جمله شناخت رفتار پر خطر رانندگان استفاده شده است. با توجه به اهمیت تخلف در وقوع تصادفات، در این پژوهش سعی شده که با توجه به نظریه رفتار برنامه‌ریزی‌شده سهم هر یک از عوامل انسانی در تمایل به تخلفات و وقوع تصادفات بررسی شده و روابط موجود میان آن‌ها تجزیه و تحلیل شود. برای شناسایی روابط موجود میان عوامل انسانی موثر در وقوع تصادفات از نظریه رفتار برنامه‌ریزی‌شده، استفاده شده است که نتایج نشان داد این نظریه پیش‌بینی کننده‌ی مناسبی از رفتار است. در این مطالعه به منظور تحلیل و بررسی روابط موجود میان متغیرها از مدل‌سازی معادلات ساختاری کمک گرفته شد. برای تحلیل آماری داده‌ها از تحلیل عاملی اکتشافی و تاییدی استفاده شد. رابطه‌ای قوی میان تمایل به تخلف راننده و فراوانی تصادفات یافت شد. سازه‌های مورد بررسی در این نظریه که شامل نگرش و هنجارهای ذهنی و کنترل رفتاری درک شده بود به صورت مستقیم بر تمایل راننده به انجام تخلف تاثیر‌گذار بودند. بیشترین تاثیر بر تمایل به تخلفات، متعلق به متغیر سناریو اول شامل شاخص‌های هنجارهای ذهنی و کنترل رفتاری درک‌شده بود که از آن‌ها به صورت همزمان در یک گویه با عنوان سناریو اول استفاده شد. در این مطالعه از متغیر مواجهه به عنوان یک متغیر تاثیر گذار بر وقوع تصادفات استفاده شد که این متغیر در مدل نهایی، تاثیر‌گذارترین عامل چه به صورت مستقیم و چه به صورت غیر مستقیم بر دو گونه تصادفات جزئی و تصادفات شدید بود و در جایگاه بعدی تمایل به تخلف قرار گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of Taxi drivers’ behavior and Intention to violations based on the theory of planned behavior by using structural equation modeling

نویسندگان [English]

  • Mohammadreza Bakhtiary
  • Hossein Ghasemi
  • Hamid Reza Behnood
IKIU
چکیده [English]

The theory of planned behavior has been used in various studies to understand human behavior in various traffic studies, including the understanding of the risky behavior of drivers. Considering the importance of violation in the occurrence of crashes, we tried to measure the contribution of each human factor in its occurrence and analyze the existing relationships between them according to the theory of planned behavior. According to the use of this theory, a large number of independent and dependent parameters were found in the research, and structural equation modeling was used to analyze and investigate the relationships between them. Also, exploratory and confirmatory factor analysis was used for statistical analysis of data. A strong relationship was found between the driver's Intention toward violations and the frequency of crashes. The structures examined in this theory, which included attitude subjective norms and perceived behavioral control, directly affected the driver's Intention of a violation. The greatest impact belonged to the variable of the first scenario, which included a special category of indicators. These indicators included the indicators used in the discussion of perceived behavioral control and subjective norms in the descriptive norms section, which were used simultaneously in an item titled the first scenario. In the positions after that, the attitude and second scenario were placed. The second scenario included a group of indicators that examined subjective norms in the brief norms section. Also, a significant relationship was found between the two variables of slip and error with the frequency of crashes.

کلیدواژه‌ها [English]

  • Traffic Crash
  • Theory of Planned Behavior
  • Structural Equation Modeling
  • Driver Behavior
  • Intention to Violations
[1] Singh. (2015). Critical reasons for crashes investigated in the national motor vehicle crash causation survey. NHTSA Traffic Safety Facts Report No. DOT HS 812.
[2] Emmanuel Kofi Adanua, ,. R. (2017). Multilevel analysis of the role of human factors in regional disparities in crash outcomes. Accident Analysis and Prevention 109.
[3] AASHTO. (2010). Highway Safety Manual.
[4] Forward, S. E. (2010). Intention to speed in a rural area: Reasoned but not reasonable. Transportation Research Part F.
[5] Iversen, H. a. (2004). Attitudes towards traffic safety, driving behaviour and accident involvement among the Norwegian public. Ergonomics, 555-572.
[6] Castanier, C. D. (2013). Theory of planned behaviour and road violations: The moderating influence of perceived behavioural control. Transportation Research Part F: Traffic Psychology and Behaviour, 148-158.
[7] Cheng, Z. (2019). Speeding Violation Type Prediction Based on Decision Tree Method: A Case Study in Wujiang, China. Journal of Advanced Transportation.
[8] Bazargan, S. (2016). The Theory of Planned Behavior (TPB) and Texting While Driving Behavior in College Students. Traffic Injury Prevention.
[9] Elliott, M. A. (2013). Evidence that changes in social cognitions predict changes in self-reported driver behavior: Causal analyses of two-wave panel data. Accident Analysis and Prevention.
[10] Bordarie, J. (2019). Predicting intentions to comply with speed limits using a ‘decision tree’ applied to an extended version of the theory of planned behaviour. University of Tours – France.
[11] Atombo, C. (2016). Investigating the motivational factors influencing drivers intentions to unsafe driving behaviours: Speeding and overtaking violations. Transportation Research Part F.
[12] medical examiner. (2019). Accident statistics
[13] The World Health Organization. (2020).
[14] Das, S. (2015). Estimating likelihood of future crashes for crash-prone drivers. jouraloftaffic and transportation engineering.
[15] Dae-Hwan Kim, L. M.-K. (2015). Prediction of vehicle crashes by drivers' characteristics and past traffic violations in Korea using a zero-inflated negative binomial model. Traffic Injury Prevention.
[16] Cantor, D. E. (2009). A driver focused truck crash prediction model. Transportation Research Part E.
[17] Shinar, D. e. (2017). Traffic safety and human behavior. Emerald Group Publishing.
[18] Ajzen. (1991,2011). The theory of planned behavior. Org. Behav. Hum.
[19] Salonen, A. O. (2019). Towards Autonomous Transportation. Passengers’ Experiences, Perceptions and Feelings in a Driverless Shuttle Bus in Finland. sustainability.
[20] Tang, T. (2020). Understanding Electric Bikers’ Red-Light Running Behavior:Predictive Utility of Theory of Planned Behavior vs PrototypeWillingness Model. Journal of Advanced Transportation.
[21] Joseph B. Bayer, S. W. (2012). Texting while driving on automatic: Considering the frequency-independent side of habit. Computers in Human Behavior.
[22] Byrne, B. M. (2001). Structural equation modeling with AMOS, EQS, and LISREL: Comparative approaches to testing for the factorial validity of a measuring instrument. International journal of testing.
[23] W. Qi, B. S. (2021). Modeling drivers’ scrambling behavior in China: An application of theory of planned behavior,” Travel Behav. Soc.
[24] Z. Li, S. S. (2021). Integration of theory of planned behavior, sensation seeking, and risk perception to explain the risky driving behavior of truck drivers. Sustain.
[25] Tan, C. (2022). Modeling effects of driver safety attitudes on traffic violations in China using the theory of planned behavior. IATSS Research.
[26] QIAN ZHANG, Z. J. (2014). An Application of the Driver Behavior Questionnaire to Chinese Carless Young Drivers. Traffic Injury Prevention.
[27] Stanojevic, P. (2018). The driver behaviour questionnaire in South-East Europe countries: Bulgaria, Romania and Serbia. Transportation Research Part F.
[28] Omidi, L. (2021). Traffic climate, driver behaviour and dangerous driving among taxi drivers. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS.
[29] Guo. (2010). Near crashes as crash surrogate for naturalistic driving studies. Transportation Research Record, 66-74.
[30] Klauer, S. D. (2006). The Impact of Driver Inattention on Near-Crash/Crash Risk: An Analysis Using the 100-Car Naturalistic Driving Study Data. Virginia Tech Transportation Institute.
[31] Bener, A. Ö. (2008). The driver behaviour questionnaire in Persian gulf countries. Qatar and United Arab Emirates. Accident Analysis & Prevention, 1411-1417.
[32] Byrne, B. M. (2020). Chapter Bootstrapping as an aid to nonnormal data.
[33] Kline, R. B. (2023). Principles and practice of structural equation modeling. . Guilford publications.
[34] Teo, T. T.-C. (2013). Applying structural equation modeling (SEM) in educational research: An introduction’, in Application of structural equation modeling in educational research and practice.
[35] Fedai, A. (2016). Providing a description model of urban public vehicle drivers' accidents based on the role of behavior, attitude and perceived of drivers. Sharif University of Technology.
[36] Efrat, K. and Shoham, A. (2013) ‘The theory of planned behavior, materialism, and aggressive driving’, Accident Analysis & Prevention, 59, pp. 459–465. doi: 10.1016/j.aap.2013.06.023.
[37] Qaid, H. et al. (2022) ‘Speed choice and speeding behavior on Indonesian highways: Extending the theory of planned behavior’, IATSS Research, 46(2), pp. 193–199. doi: 10.1016/j.iatssr.2021.11.013.
[38] Ajzen, I. (2020) ‘The theory of planned behavior: Frequently asked questions’, Human Behavior and Emerging Technologies, 2(4), pp. 314–324. doi: 10.1002/hbe2.195.
[39] Potard, C. et al. (2018) ‘Driving under the influence of alcohol and perceived invulnerability among young adults : An extension of the theory of planned behavior’, Transportation Research Part F: Psychology and Behaviour, 55, pp. 38–46. doi: 10.1016/j.trf.2018.02.033.
[40] Atombo, C. et al. (2017) ‘Perceived enjoyment, concentration, intention, and speed violation behavior: Using flow theory and theory of planned behavior’, Traffic Injury Prevention, 18(7), pp. 694–702. doi: 10.1080/15389588.2017.1307969.
[41] Li, Z. et al. (2021) ‘Integration of theory of planned behavior, sensation seeking, and risk perception to explain the risky driving behavior of truck drivers’, Sustainability (Switzerland), 13(9). doi: 10.3390/su13095214.