ارزیابی اثر مقایسه ای الیاف ماکرو پلی پروپیلن و میلگرد های مسلح کننده در کنترل و کاهش ترک خوردگی ناشی از جمع شدگی خمیری در روسازی های بتنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)، تهران، ایران

2 گروه راه و ترابری، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران

چکیده

کاهش شدت ترک خوردگی ناشی از جمع شدگی خمیری در روسازی های بتنی با استفاده از مواد و مصالح نوین و مقایسه با روش های سنتی با استفاده از روش های تحلیل نوین، می تواند باعث افزایش دوام و بهبود عملکرد روسازی بتنی گردد. تحقیق حاضر به بررسی اثر مقایسه ای الیاف ماکرو پلی پروپیلن و میلگرد های مسلح کننده در کنترل و کاهش ترک خوردگی ناشی از جمع شدگی خمیری در روسازی های بتنی می پردازد. شدت ترک خوردگی در مخلوط بتنی شاهد، حاوی شبکه فولادی در فواصل 100*100 میلیمتر و حاوی الیاف ماکرو پلی پروپیلن در مقدار 1/8 Kg/m3 مطابق با روش استاندارد ASTM C1579 ارزیابی گردید. نتایج حاکی از آن بود که هر دو عناصر مسلح کننده باعث کاهش چشمگیر مساحت ترک خوردگی ترک خوردگی تا میزان 40% در بتن حاوی شبکه و 68% در بتن الیافی می گردد. طول ترک خوردگی بیشتر از متوسط عرض ترک خوردگی تغییر پیدا می کند. رفتار ترک خوردگی بتن حاوی شبکه فولادی با رفتار ترک خوردگی بتن الیافی مشابه بوده، در نتیجه الیاف ماکرو پلی پروپیلن جایگزین مناسب شبکه فولادی می تواند تلقی گردد. همچنین دیده شد که اثر الیاف در کاهش ترک خوردگی بیشتر از اثر شبکه فولادی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the comparative effect of macro polypropylene fibers and steel reinforcement bars in controlling and reducing plastic shrinkage cracking in concrete pavements

نویسندگان [English]

  • Mohammad reza Hajizadeh 1
  • Abolfazl Hassani 2
1 Faculty of environment and civil engineering, amirkabir university, tehran, iran
2 Faculty of Environmental and civil engineering
چکیده [English]

Reducing the severity of plastic shrinkage cracking in concrete pavements by using new materials and comparing them with traditional methods by using new analysis methods can increase the durability and improve the performance of concrete pavements. The current research examines the comparative effect of macro polypropylene fibers and reinforcement bars in controlling and reducing plastic shrinkage cracking in concrete pavements. The severity of cracking in the reference concrete mixture, steel bars mesh at intervals of 100 x 100 mm, and macro polypropylene fibers in the amount of 1.8 Kg/m3 was evaluated according to the ASTM C1579 standard method. The results indicated that both reinforcement bars and fibers significantly reduce the cracking area by up to 40% in concrete containing reinforcement and 68% in fiber-reinforced concrete. The length of the crack changes more than the average width of the crack. The cracking behavior of concrete containing steel bars mesh is similar to the cracking behavior of fiber concrete, as a result, macro polypropylene fibers may be considered as a suitable substitute for steel bars mesh. It was also seen that the effect of fibers in reducing cracking is greater than the effect of steel bar mesh.

کلیدواژه‌ها [English]

  • Concrete Pavement
  • Plastic Shrinkage Cracking
  • Steel Bar Mesh
  • Macro Polypropylene Fibers
  • Comparative Effect
[1] N. Delatte, Concrete pavement design, construction, and performance, Crc Press, 2018.
[2] P.K. Mehta, P.J. Monteiro, Concrete: microstructure, properties, and materials, McGraw-Hill Education, 2014.
[3] R.B. Mallick, T. El-Korchi, Pavement engineering: principles and practice, CRC Press, 2008.
[4] Y.H. Huang, Pavement analysis and design, Pearson Prentice Hall Upper Saddle River, NJ, 2004.
[5] M.Y. Shahin, Pavement management for airports, roads, and parking lots, 1994.
[6] J.T. Kolawole, R. Combrinck, W.P. Boshoff, Plastic cracking behaviour of concrete and its interdependence on rheo-physical properties, Composites Part B: Engineering, 230 (2022) 109527.
[7] M. Wyrzykowski, S. Ghourchian, B. Münch, M. Griffa, A. Kaestner, P. Lura, Plastic shrinkage of mortars cured with a paraffin-based compound–Bimodal neutron/X-ray tomography study, Cement and Concrete Research, 140 (2021) 106289.
[8] F. Sayahi, M. Emborg, H. Hedlund, A. Cwirzen, M. Stelmarczyk, The severity of plastic shrinkage cracking in concrete: a new model, Magazine of Concrete Research, 73(6) (2019) 315-324.
[9] F. Sayahi, M. Emborg, H. Hedlund, A. Cwirzen, Effect of steel fibres extracted from recycled tyres on plastic shrinkage cracking in self-compacting concrete, Magazine of Concrete Research, 73(24) (2021) 1270-1282.
[10] H. Rong, W. Dong, W. Yuan, X. Zhou, An improved ring test to assess cracking resistance of concrete under restrained shrinkage, Theoretical and Applied Fracture Mechanics, 113 (2021) 102976.
[11] G. Moelich, J. Van Zyl, N. Rabie, R. Combrinck, The influence of solar radiation on plastic shrinkage cracking in concrete, Cement and Concrete Composites, 123 (2021) 104182.
[12] M. Maj, A. Ubysz, Cracking of composite fiber-reinforced concrete foundation slabs due to shrinkage, Materials Today: Proceedings, 38 (2021) 2092-2098.
[13] Q. Liu, J. Xiao, A. Singh, Quantification of plastic shrinkage and cracking in mortars containing different recycled powders using digital image correlation technique, Construction and Building Materials, 293 (2021) 123509.
[14] I. Bertelsen, L. Ottosen, G. Fischer, Quantitative analysis of the influence of synthetic fibres on plastic shrinkage cracking using digital image correlation, Construction and Building Materials, 199 (2019) 124-137.
[15] P. Nanduri, A critical review on early‐age cracking in concrete, Int J Civ Eng Technol, 11 (2021) 74-83.
[16] F. Sayahi, M. Emborg, H. Hedlund, A. Cwirzen, Effect of admixtures on mechanism of plastic shrinkage cracking in self-consolidating concrete, ACI Materials Journal, 117(5) (2020) 51-59.
[17] G.M. Moelich, J. Kruger, R. Combrinck, Plastic shrinkage cracking in 3D printed concrete, Composites Part B: Engineering, 200 (2020) 108313.
[18] G. Moelich, R. Combrinck, A weather data analysis method to mitigate and prevent plastic shrinkage cracking, Construction and Building Materials, 253 (2020) 119066.
[19] D. Meyer, W. Boshoff, R. Combrinck, Utilising super absorbent polymers as alternative method to test plastic shrinkage cracks in concrete, Construction and Building Materials, 248 (2020) 118666.
[20] J.T. Kolawole, R. Combrinck, W.P. Boshoff, Shear rheo-viscoelasticity approach to the plastic cracking of early-age concrete, Cement and Concrete Research, 135 (2020) 106127.
[21] W. Boshoff, V. Mechtcherine, D. Snoeck, C. Schröfl, N. De Belie, A.B. Ribeiro, D. Cusson, M. Wyrzykowski, N. Toropovs, P. Lura, The effect of superabsorbent polymers on the mitigation of plastic shrinkage cracking of conventional concrete, results of an inter-laboratory test by RILEM TC 260-RSC, Materials and structures, 53 (2020) 1-16.
[22] I. Bertelsen, L. Ottosen, G. Fischer, Influence of fibre characteristics on plastic shrinkage cracking in cement-based materials: A review, Construction and Building Materials, 230 (2020) 116769.
[23] A.Z. Bendimerad, B. Delsaute, E. Rozière, S. Staquet, A. Loukili, Advanced techniques for the study of shrinkage-induced cracking of concrete with recycled aggregates at early age, Construction and Building Materials, 233 (2020) 117340.
[24] F. Sayahi, M. Emborg, H. Hedlund, A. Cwirzen, M. Stelmarczyk, The severity of plastic shrinkage cracking in concrete: a new model, Magazine of Concrete Research, 73(6) (2021) 315-324.
[25] P.-m. Zhan, Z.-h. He, Application of shrinkage reducing admixture in concrete: A review, Construction and Building Materials, 201 (2019) 676-690.
[26] T. Hemalatha, G. Ramesh, Mitigation of plastic shrinkage in fly ash concrete using basalt fibres, Canadian Journal of Civil Engineering, 46(8) (2019) 759-769.
[27] S. Ghourchian, M. Wyrzykowski, M. Plamondon, P. Lura, On the mechanism of plastic shrinkage cracking in fresh cementitious materials, Cement and Concrete Research, 115 (2019) 251-263.
[28] R. Combrinck, W.P. Boshoff, Tensile properties of plastic concrete and the influence of temperature and cyclic loading, Cement and Concrete Composites, 97 (2019) 300-311.
[29] S.H. Kosmatka, M. Wilson, Design and Control of Concrete Mixtures: The Guide to Applications, Methods and Materials,  (2011).
[30] A. Zarei, H. Rooholamini, T. Ozbakkaloglu, Evaluating the properties of concrete pavements containing crumb rubber and recycled steel fibers using response surface methodology, International Journal of Pavement Research and Technology, 15(2) (2022) 470-484.
[31] G.A. Arce, H. Noorvand, M.M. Hassan, T. Rupnow, N. Dhakal, Feasibility of low fiber content PVA-ECC for jointless pavement application, Construction and Building Materials, 268 (2021) 121131.
[32] B. Alam, İ.Ö. Yaman, Fatigue performance of PVA fibre reinforced cementitious composite overlays, International Journal of Pavement Engineering, 22(7) (2021) 822-828.
[33] M.A. Abdulridha, M.M. Salman, Q.S. Banyhussan, Effect polypropylene of fiber on drying shrinkage cracking of concrete pavement using response surface methodology, Journal of Engineering and Sustainable Development, 25(3) (2021) 10-21.
[34] H. Rooholamini, A. Hassani, M. Aliha, Evaluating the effect of macro-synthetic fibre on the mechanical properties of roller-compacted concrete pavement using response surface methodology, Construction and building materials, 159 (2018) 517-529.
[35] H. Rooholamini, R. Sedghi, B. Ghobadipour, M. Adresi, Effect of electric arc furnace steel slag on the mechanical and fracture properties of roller-compacted concrete, Construction and building materials, 211 (2019) 88-98.
[36] J. Mora, M. Martín, R. Gettu, A. Aguado, Study of plastic shrinkage cracking in concrete and the influence of fibers and a shrinkage reducing admixture, Industria Italiana del Cemento,  (2001) 828-837.
[37] Y. Ma, M. Tan, K. Wu, Effect of different geometric polypropylene fibers on plastic shrinkage cracking of cement mortars, Materials and Structures, 35 (2002) 165-169.
[38] C. Qi, J. Weiss, J. Olek, Characterization of plastic shrinkage cracking in fiber reinforced concrete using image analysis and a modified Weibull function, Materials and Structures, 36 (2003) 386-395.
[39] N. Banthia, R. Gupta, Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete, Cement and concrete Research, 36(7) (2006) 1263-1267.
[40] G. Olivier, R. Combrinck, M. Kayondo, W.P. Boshoff, Combined effect of nano-silica, super absorbent polymers, and synthetic fibres on plastic shrinkage cracking in concrete, Construction and Building Materials, 192 (2018) 85-98.
[41] A. Mazzoli, S. Monosi, E.S. Plescia, Evaluation of the early-age-shrinkage of Fiber Reinforced Concrete (FRC) using image analysis methods, Construction and Building Materials, 101 (2015) 596-601.
[42] C. Design, Maintenance Manual for Highways Concrete Pavements No. 731 in, The Ministry of Road & Urban Development, Deputy of Technical, Infrastructure and Production Affairs,  (2017).(In Persian)