تاثیر سیستم مقاوم باربر جانبی مهاربند الاکلنگی – میراگر ویسکوز بر عملکرد قاب‌های برشی

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده علوم و فنون منابع سازمانی، دانشگاه جامع علوم انتظامی امین، تهران، ایران،

چکیده

با توجه به تجربه‌های بدست آمده از زلزله‌های گذشته، نیاز به سازه‌ای که بعد از وقوع زلزله، خسارت و زیان کمتری داشته و به آسانی قابل تعمیر باشد، امری ضروری است. یکی از روش‌های استهلاک انرژی لرزه‌ای و داشتن سازه‌ای تعمیرپذیر بکارگیری سیستم مهاربند الاکلنگی است. در این مطالعه به بررسی اثر استفاده از مهاربند الاکلنگی به همراه میراگر ویسکوز مایع در بهبود شکنندگی لرزه‌ای سازه‌ها پرداخته شده است. مهاربند الاکلنگی با اضافه کردن میراگر ویسکوز مایع تشکیل شده است. مجموعه این سیستم در پایه سازه نصب و در دو حالت اتصال کابل‌ها به طبقه اول و طبقه آخر مورد بررسی قرار گرفته است. برای مطالعات عددی مدل سازه‌ای سه طبقه برشی با رفتار غیرخطی در نظر گرفته شده‌ است. سازه‌های مورد بررسی در حالت کنترل نشده و مجهز به سیستم مهاربند-الاکلنگ-میراگر تحت ارتعاش 60 رکورد زلزله توصیه شده در آیین نامه‌های لرزه‌ای با مشخصات و محتوای فرکانسی متفاوت قرار گرفته‌اند. نتایج حاصل از تحلیل‌های دینامیکی تحت تحلیل رگرسیون قرار گرفته تا رابطه بین شدت تحریک زلزله و پاسخ سازه حاصل شده و نیاز لرزه‌ای سازه تخمین زده شود. در نهایت منحنی‌های شکنندگی به ازای سطوح عملکردی خفیف، ملایم، وسیع، و کامل به ازای سه معیار عملکردی شامل نسبت دریفت اعضای سازه‌ای، نسبت دریفت اعضای غیرسازه‌ای حساس به دریفت و شتاب اعضای غیرسازه‌ای حساس به شتاب، تعیین و با هم مقایسه شده‌اند. نتایج حاکی از عملکرد موثر سیستم مهاربند-الاکلنگ-میراگر در بهبود شکنندگی لرزه‌ای سازه‌های مورد مطالعه است، به طوریکه شکنندگی به میزان 35% کاهش یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of the side bearing resistant system of the rocking brace - viscous damper on the performance of shear frames

نویسنده [English]

  • Ali kachooee
Faculty member, Department of Basic Sciences and Engineering, Faculty of Science and Technology and Organizational Resources, Amin university, Tehran, Iran
چکیده [English]

According to the experiences gained from past earthquakes, the need for a structure that has less damage and can be easily repaired after an earthquake is essential. One of the methods of depreciating seismic energy and having a repairable structure is to use the rocking brace system. In this study, the effect of using swing brace along with liquid viscous damper in improving the seismic fragility of structures has been investigated. The swing brace is formed by adding a liquid viscous damper. The set of this system has been installed at the base of the structure and in two ways of connecting the cables to the first floor and the last floor. For numerical studies, a three-story shear structural model with nonlinear behavior is considered. The examined structures in an uncontrolled state and equipped with a brace-swing-damper system have been subjected to the vibration of 60 earthquake records recommended in the seismic regulations with different specifications and frequency content. The results of dynamic analyzes are subjected to regression analysis to obtain the relationship between the intensity of earthquake excitation and the response of the structure and to estimate the seismic demand of the structure. Finally, the fragility curves for mild, mild, extensive, and complete performance levels for three performance criteria including drift ratio of structural members, drift ratio of non-structural members sensitive to drift and acceleration of non-structural members sensitive to acceleration have been determined and compared. The results indicate the effective performance of the brace-swing-damper system in improving the seismic fragility of the studied structures, so that the fragility has decreased by 35%.

کلیدواژه‌ها [English]

  • Swing Brace
  • Viscous Damper
  • Fragility Curve
[1] B. F. Spencer Jr and S. Nagarajaiah, State of the art of structural control, Journal of structural engineering, 129(7), (2003) 845-856.
[2] T. T.Soong and B. F. Spencer, Supplemental energy dissipation: state-of-the-art and state-of-thepractice, Engineering Structures, 24(3), (2002), 243-259.
[3] T.T. Soong and G.F. Dargush, Passive energy dissipation systems in structural  engineering,, Journal of Structural Control, 6(1), (1999), 172.
[4] F. Naeim, and J.M. Kelly, Design of seismic isolated structures, from theory to practice.: John Wiley & Sons, (1999).
[5] F.Y. Cheng, H. Jiang and K. Lou, Smart Structures, Innovative Systems for Seismic Response Control, CRC Press, USA ,1, (2008), 1-50.
[6] I.D. Aiken, J.M. Kelly, Comparative study of four passive energy dissipation systems, Bull NZ Nat Soc Earthquake Engng, 25(3), (1992),175–92.
[7] J.M. Kelly, R. Skinner and A.J.B.o.N.S.f.E.E. Heine, Mechanisms of energy absorption in special devices for use in earthquake resistant structures, 5(3), (1972), 63-88.
[8] D. M. Bergman and S. C. Goel, Evaluation of cyclic testing of steel-plate devices for added damping and stiffness, Department of Civil Engineering, Report No.87-10, (1987).
[9] A.S. Pall and C. Marsh, Response of friction damped braced frames, ASCE, J Struct Div, 1208(ST6), (1982), 1313.
[10] P. Castaldo, Dynamic Response of Systems Equipped with Viscous and Viscoelastic Dampers , Integrated Seismic Design of Structure and Control Systems, (2014), 63-85.
[11] C.A. Peckens, A. Alsgaard, C. Fogg, M.C. Ngoma and C. Voskuil, Utilizing the Particle Swarm Optimization Algorithm for Determining Control Parameters for Civil Structures Subject to Seismic Excitation, Algorithms, 14(292), (2021), a14100292.
[12] S. Bahrami and A.A. Puri Rahim, Technical investigation of precast concrete defense headquarters resistant to blast loads, Passive Defense J., 5, (2023), 15-25. (In Persian)
[13] M. Yasin, Seismic Behavior of X-Braced Frames with Lower Grade Steel by using Fragility Curves under Near-Field Earthquakes, Master's thesis, Bomehen Azad Univ., (2020).
[14] Z. A. Al-Sadoon, A. S. Karzad, A. Sagheer and M. AlHamaydeh, Replaceable fuse buckling-restrained brace (BRB): Experimental cyclic qualification testing and NLFEA modeling Paper presented at the Structures, (2022).
[15] Y. Bakhshayesh, M. Shayanfar and A. Ghamari. Improving the performance of concentrically braced frame utilizing an innovative shear damper, Journal of Constructional Steel Research,(2022), 182, 106672.
[16] A. Ghabussi, J. A. Marnani and M. S. Rohanimanesh, Seismic performance assessment of a novel ductile steel braced frame equipped with steel curved damper, Paper presented at the Structures, (2021).
[17] A. Ghamari, Y.-J. Kim and J. Bae, Utilizing an I-shaped shear link as a damper to improve the behaviour of a concentrically braced frame, Journal of Constructional Steel Research, 186, (2021), 106915.
[18] A. Ghamari, Y.-J. Kim and J. Bae, An Innovative shear link as damper: An experimental and numerical study, Steel and Composite Structures, 42(4), (2022), 539.
[19] D. LEE, D.P. Taylor, Viscous damper development and future trends, struct. design tall build. 10, (2001), 311–320.
[20] M.C. Constantinou, T.T. Soong and G.F. Dargush, Passive energy dissipation systems for structural design and retrofit, (1998).
[21] J.D. Kang, H. Tagawa, Seismic response of steel structures with seesaw systems using viscoelastic dampers, Earthquake Engineering and Structural Dynamics, 42(5), (2012), 779-794.
[22] A. N. Kulkarni and S. R. Patil, Magneto-Rheological (MR) and Electro-Rheological (ER) Fluid Damper: A Review Parametric Study of Fluid Behavior, Journal of Engineering Research and Applications, 3(6), (2013), 1879-1882.
[23] J.D. Kang and H. Tagawa, Seismic performance of steel structures with seesaw energy dissipation system using fluid viscous dampers, Engineering Structures, 56, (2013), 431-442.
[24] A. Norouzi, Using the MR damper in the structure of the Seesaw brace and checking the efficiency improvement of the system, Master's thesis of Gilan University, (2022).