[1] Roeder, C. W., & Popov, E. P. (1977). Inelastic behavior of eccentrically braced steel frames under cyclic loadings. NASA STI/recon technical report N, 78, 20375.
[2] Roeder, C. W., & Popov, E. P. (1978). Eccentrically braced steel frames for earthquakes. Journal of the Structural Division, 104(3), 391–412.
[3] Popov, E. P., & Bertero, V. V. (1980). Seismic analysis of some steel building frames. Journal of the Engineering Mechanics Division, 106(1), 75–92.
[4] Hjelmstad, K. D., & Popov, E. P. (1983). Cyclic behavior and design of link beams. Journal of Structural Engineering, 109(10), 2387–2403.
[5] Malley, J. O., & Popov, E. P. (1984). Shear links in eccentrically braced frames. Journal of structural engineering, 110(9), 2275–2295.
[6] Kasai, K., & Popov, E. P. (1986). General behavior of WF steel shear link beams. Journal of Structural Engineering, 112(2), 362–382.
[7] Ricles, J. M., & Popov, E. P. (1987). Dynamic analysis of seismically resistant eccentrically braced frames. University of California, Earthquake Engineering Research Center.
[8] Engelhardt, M. D., & Popov, E. P. (1992). Experimental performance of long links in eccentrically braced frames. Structural Engineering, 118(11), 3067–3088.
[9] AISC (American Institute of Steel Construction). (2016). “Seismic provisions for structural steel buildings.” AISC/ANSI 341-16. Chicago.
[10] Engelhardt, M., & Popov, E. (1989). On design of eccentrically braced frames. Earthquake Spectra, 5(3), 495–511.
[11] Mata, R., Nuñez, E., Calo, B., & Herrera, R. (2023). Seismic performance of eccentrically braced frames with short-links: IDA approach using chilean earthquakes. Journal of Building Engineering, 76, 107186. https://doi.org/https://doi.org/10.1016/j.jobe.2023.107186
[12] Li, S., Xu, T., Li, X., Liang, G., & Xi, H. (2023). Elastic stiffness and bearing mechanism of eccentrically braced steel frames. Structures, 55, 818–833. https://doi.org/https://doi.org/10.1016/j.istruc.2023.06.065
[13] Daneshmand, A., & Hashemi, B. H. (2012). Performance of intermediate and long links in eccentrically braced frames. Journal of Constructional Steel Research, 70, 167–176.
[14] Azad, S. K., & Topkaya, C. (2017). A review of research on steel eccentrically braced frames. Journal of constructional steel research, 128, 53–73.
[15] Mansouri, A. (2021). Development of a novel haunched link for eccentrically braced frames. Engineering structures, 245, 112870.
[16] Ghobarah, A., & Ramadan, T. (1991). Seismic analysis of links of various lengths in eccentrically braced frames. Canadian Journal of Civil Engineering, 18(1), 140–148.
[17] Chegeni, B., & Mohebkhah, A. (2014). Rotation capacity improvement of long link beams in eccentrically braced frames. Scientia Iranica, 21(3), 516–524.
[18] Musbar. (2019). The Behavior of Modified Long Links with Supplemental Double Stiffeners on Eccentrically Braced Frames. In IOP Conference Series: Materials Science and Engineering (Vol. 536, p. 12095).
[19] Berman, J. W., Okazaki, T., & Hauksdottir, H. O. (2010). Reduced link sections for improving the ductility of eccentrically braced frame link-to-column connections. Structural Engineering, 136(5), 543–553.
[20] Keivan, A., & Zhang, Y. (2019). Seismic performance evaluation of self-centering K-type and D-type eccentrically braced frame systems. Engineering Structures, 184, 301–317.
[21] Shen, Y., Christopoulos, C., Mansour, N., & Tremblay, R. (2011). Seismic Design and Performance of Steel Moment-Resisting Frames with Nonlinear Replaceable Links. Journal of Structural Engineering, 137(10), 1107–1117. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000359
[22] Mansour, N., Christopoulos, C., & Tremblay, R. (2011). Experimental Validation of Replaceable Shear Links for Eccentrically Braced Steel Frames. Journal of Structural Engineering, 137(10), 1141–1152. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000350
[23] Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., … Von Winterfeldt, D. (2003). A Framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497
[24] Bruneau, M., & Reinhorn, A. M. (2006). Overview of the resilience concept. In 8th US National Conference on Earthquake Engineering. San Francisco.
[25] Csa, C. (2009). CSA-S16-09: design of steel structures. Canadian Standards Association, Mississauga, Ontario, Canada.
[26] Vetr, M. G., Ghamari, A., & Bouwkamp, J. (2017). Investigating the nonlinear behavior of Eccentrically Braced Frame with vertical shear links (V-EBF). Journal of Building Engineering, 10, 47–59.
[27] Baradaran, M. R., Hamzezarghani, F., Ghiri, M. R., & Mirsanjari, Z. (2015). The effect of vertical shear-link in improving the seismic performance of structures with eccentrically bracing systems. International Journal of Civil and Environmental Engineering, 9(8), 1086–1090.
[28] Zhuang, L., Wang, J., Nie, X., & Wu, Z. (2022). Experimental study on seismic behaviour of eccentrically braced composite frame with vertical LYP steel shear link. Engineering Structures, 255, 113957. https://doi.org/https://doi.org/10.1016/j.engstruct.2022.113957
[29] Nejati, F., Pouraminian, M., Zhian, M., & Ashkevary, M. (2022). Seismic performance of vertical link beam equipped with absorbing plates for creating rocking motion and directing damage. Journal of Building Pathology and Rehabilitation, 8(1), 7. https://doi.org/10.1007/s41024-022-00249-z
[30] Stratan, A., & Dubina, D. (2004). Bolted links for eccentrically braced steel frames. Connections in Steel Structures V, 223–232.
[31] Stratan, A., Dinu, F., & Dubina, D. (2010). Replacement of bolted links in dual eccentrically braced frames. In 14th European Conference on Earthquake Engineering.
[32] Dubina, D., Stratan, A., & Chesoan, A. (2017). I. 11.20: Design recommendations for dual moment--eccentric braced frames with replaceable links. ce/papers, 1(2–3), 3414–3423.
[33] Mortazavi, P., Lee, E., Binder, J., Kwon, O.-S., & Christopoulos, C. (2023). Large-scale experimental validation of optimized cast steel replaceable modular yielding links for eccentrically braced frames. Journal of Structural Engineering, 149(7), 4023071.
[34] Mahmoudi, F., Dolatshahi, K. M., Mahsuli, M., Shahmohammadi, A., & Nikoukalam, M. T. (2016). Experimental Evaluation of Steel Moment Resisting Frames with a Nonlinear Shear Fuse. In Geotechnical and Structural Engineering Congress 2016 (pp. 624–634). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784479742.052
[35] Mahmoudi, F., Dolatshahi, K. M., Mahsuli, M., Nikoukalam, M. T., & Shahmohammadi, A. (2019). Experimental study of steel moment resisting frames with shear link. Journal of Constructional Steel Research, 154, 197–208. https://doi.org/10.1016/j.jcsr.2018.11.027
[36] Nikoukalam, M. T., & Dolatshahi, K. M. (2015). Development of structural shear fuse in moment resisting frames. Journal of Constructional Steel Research, 114, 349–361. https://doi.org/10.1016/j.jcsr.2015.08.008
[37] Harris, H. G., & Sabnis, G. (1999). Structural modeling and experimental techniques. CRC press.
[38] Berman, J. W., & Bruneau, M. (2007). Experimental and analytical investigation of tubular links for eccentrically braced frames. Engineering Structures, 29(8), 1929–1938. https://doi.org/10.1016/j.engstruct.2006.10.012
[39] AISC (American Institute of Steel Construction). (2016). “Prequalified connections for special and intermediate steel moment frames for seismic applications.” ANSI/AISC 358-16. Chicago.
[40] SIMULIA. (2014). Abaqus analysis user’s manual. The Dassault Systèmes, Realistic Simulation. USA.
[41] Kaufmann, E., Metrovich, B., & Pense, A. (2001). Characterization of cyclic inelastic strain behavior on properties of A572 Gr. 50 and A913 Gr. 50 rolled sections. Retrieved from http://preserve.lehigh.edu/cgi/viewcontent.cgi?article=1013&context=engr-civil-environmental-atlss-reports