ضرورت مدل‌‌سازی چشمه اتصال تیر به ستون در سازه‌‌های بتن‌آرمه دارای زوال رفتاری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه عمران، دانشکده مهندسی، دانشگاه صنعتی خاتم الانبیاء بهبهان، بهبهان، ایران

چکیده

چشمه اتصال هسته مرکزی قرار گرفته در محل اتصال تیر و ستون در قاب است. هدف این مقاله بررسی تأثیر مدل‌‌سازی چشمه اتصال در رفتار سازه‌های بتنی با قاب خمشی بر نتایج تحلیل است. به این منظور دو قاب خمشی بتنی 8 و 12 طبقه با استفاده از نرم افزار اپنسیس مدل‌‌سازی و پاسخ‌های تحلیل‌‌های استاتیکی چرخه‌ای غیر خطی، آنالیز دینامیکی غیر خطی و دینامیکی افزایشی غیر خطی در حالات با و بدون مدل‌‌سازی چشمه اتصال با یکدیگر مقایسه شده است. در همه حالات زوال رفتاری طبق مدل ایبارا، مدینا و کراوینکر مد نظر قرار گرفته است. نتایج نشان داد اختلاف در ارزیابی استاتیکی مدل‌ها بسیار کم است و حضور و عدم حضور چشمه اتصال در آنالیز استاتیکی تأثیر قابل توجهی در نتایج ندارد. در آنالیز دینامیکی تأثیر چشمه اتصال قابل ملاحظه است. با بررسی منحنی شکنندگی سازه مشاهده شد که مدل با چشمه اتصال در سطوح شدت پایین‌تری به آستانه فرو ریزش می‌رسد. همچنین در تحلیل تاریخچه زمانی غیر خطی پاسخ سازه مشاهده شد زمانی که سازه در ناحیه خطی است و جابجایی‌های سازه کم است اثر مدل‌سازی و عدم مدل‌سازی چشمه اتصال ناچیز است، اما با ورود سازه به ناحیه غیر خطی جابجایی نسبی در حضور چشمه اتصال بیشتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Necessity of Modeling the Column Beam Joint Panel Zone in Reinforced Concrete Structures with Behavioral Degradation

نویسندگان [English]

  • ahmadreza fakhriyat
  • Sasan Motaghed
  • Mohammad Sadegh Shahidzadeh
Department of Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of Technology,
چکیده [English]

This study investigates the impact of incorporating panel zones into the numerical modelling of reinforced concrete moment-resisting frames (RC MRFs). Eight- and twelve-story RC MRF models were created using OpenSees software. The effects of panel zone inclusion were analyzed by comparing the results of nonlinear static (cyclic), dynamic, and incremental dynamic analyses. All models employed the Ibarra-Medina-Krawinkler (IMK) degradation model to account for material behaviour. The static analyses revealed minimal differences between models with and without panel zones. However, the influence of panel zones became significant in the dynamic analyses. Fragility curves demonstrated that models incorporating panel zones reached the collapse limit state at lower earthquake intensity levels. Additionally, the nonlinear time-history analysis showed that while panel zone effects were negligible in the linear response range, structures with modelled panel zones exhibited larger displacements upon entering the nonlinear region. These findings highlight the importance of considering panel zones in numerical models, particularly when evaluating the seismic performance of RC MRFs. Panel zones play a crucial role in capturing the inelastic response and collapse behaviour of structures under earthquake loading.

کلیدواژه‌ها [English]

  • Moment Resistant Reinforced Concrete Bending Frame
  • Ibarra-Medina-Krawinkler Model
  • Dynamic Analysis
  • panel Zone
  • OpenSees Software
[1] S. Motaghed, A.R. fakhriyat, Modeling inelastic behavior of RC adhered shear walls in opensees, Journal of Modeling in Engineering, 18(63) (2021) 15-25. (in Persian)
[2] H. Shirazi, M.R. Esfahani, Effect of Self-Consolidating Concrete on Beam-Column Exterior Joints, Amirkabir Journal of Civil Engineering, 45(1) (2013) 81-96. (in Persian)
[3] T. Yousefi, H. Tajmir Riahi, Investigation of Mechanical Properties of Geopolymer Concrete and Its Application in Beam-Column Joint, Amirkabir Journal of Civil Engineering, 54(3) (2022) 851-868. (in Persian)
[4] A. Mehrabi Moghadam, A. Yazdani, S. Motaghed, Considering the Yielding Displacement Uncertainty in Reliability of Mid-Rise RC Structures, Journal of Rehabilitation in Civil Engineering, 10(3) (2022) 141-157.
[5] R. Park, R. Dai, A comparison of the behaviour of reinforced concrete beam-column joints designed for ductility and limited ductility, Bulletin of the New Zealand Society for Earthquake Engineering, 21(4) (1988) 255-278.
[6] T. Paulay, Equilibrium criteria for reinforced concrete beam-column joints, Structural Journal, 86(6) (1989) 635-643.
[7] S.J. Pantazopoulou, J.F. Bonacci, On earthquake-resistant reinforced concrete frame connections, Canadian Journal of Civil Engineering, 21(2) (1994) 307-328.
[8] K. Entezari, M. Marefat, A. Hosseini, Experimental investigation of post-installed adhesive anchors in concrete under tension and shear loads, Amirkabir Journal of Civil Engineering, 54(6) (2022) 2303-2320.
[9] T. Paulay, M.N. Priestley, Seismic design of reinforced concrete and masonry buildings, Wiley, New York, 1992.
[10] A.S.S.R.S. Committee, Seismic Rehabilitation of Existing Buildings (ASCE/SEI 41-06), American Society of Civil Engineers, Reston, VA, 2007.
[11] FEMA356 (Prestandard and Commentary for the Seismic Rehabilitation of Buildings: Rehabilitation Requirements), American Society of Civil Engineers, Washington, DC, 2000.
[12] F. Fazileh, R. Fathi-Fazl, Z. Cai, A. Bérubé, Nonlinear modelling parameters and acceptance criteria in ASCE/SEI 41: A critical review and applicability to Canada, Canadian Journal of Civil Engineering,  (2022).
[13] A. Sharma, R. Eligehausen, G.R. Reddy, A new model to simulate joint shear behavior of poorly detailed beam–column connections in RC structures under seismic loads, Part I: Exterior joints, Engineering Structures, 33(3) (2011) 1034-1051.
[14] S. Alath, Modeling inelastic shear deformation in reinforced concrete beam-column joints,  (1995).
[15] B. Li, Q. Kai, W. Xue, Effects of eccentricity on the seismic rehabilitation performance of nonseismically detailed interior beamwide column joints, Journal of Composites for Construction, 16(5) (2012) 507-519.
[16] R. Sadjadi, M.R. Kianoush, Effect of Modeling Features on Response of Reinforced Concrete Frames, in, Proceedings of the 3th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 2004, pp. 1-6.
[17] E. Grande, M. Imbimbo, A. Napoli, R. Nitiffi, R. Realfonzo, A Nonlinear Macro-Model for the Analysis of Monotonic and Cyclic Behaviour of Exterior RC Beam-Column Joints, Frontiers in Materials, 8 (2021) 719716.
[18] M.S. Khan, A. Basit, N. Ahmad, A simplified model for inelastic seismic analysis of RC frame have shear hinge in beam-column joints, Structures, 29 (2021) 771-784.
[19] M. Ilyas, A. Ahmad, A. Riaz, F.A. Khan, S.H. Sher, M. Waseem, S.Z. Ali, Y.I. Badrashi, H.A. Waqas, H. Seitz, K. Shahzada, M. Leta, Review of Modeling Techniques for Analysis and Assessment of RC Beam–Column Joints Subjected to Seismic Loads, Materials, 15(21) (2022) 7448.
[20] J.C. Anderson, W.H. Townsend, Models for RC frames with degrading stiffness, Journal of the Structural Division, 103(12) (1977) 2361-2376.
[21] C.L. Ning, B. Yu, B. Li, Beam-column joint model for nonlinear analysis of non-seismically detailed reinforced concrete frame, Journal of Earthquake Engineering, 20(3) (2016) 476-502.
[22] B. Abdelwahed, A review on reinforced concrete beam column joint: Codes, experimental studies, and modeling, Journal of Engineering Research (2307-1877), 8(4) (2020).
[23] L.F. Ibarra, R.A. Medina, H. Krawinkler, Hysteretic models that incorporate strength and stiffness deterioration, Earthquake engineering & structural dynamics, 34(12) (2005) 1489-1511.
[24] E. Kalkan, Prediction of seismic demands in building structures, University of California, Davis, 2006.
[25] Structural Engineering Design Provisions, UBC-97, Vol. 2, UBC, 1997.
[26] T.P.E.E.R.C. (PEER), OpenSees (software).
[27] L.N. Lowes, A. Altoontash, Modeling reinforced-concrete beam-column joints subjected to cyclic loading, Journal of Structural Engineering, 129(12) (2003) 1686-1697.
[28] A. Altoontash, Simulation and damage models for performance assessment of reinforced concrete beam-column joints, Stanford university, 2004.
[29] C.B. Haselton, C. Pacific Earthquake Engineering Research, Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings, in, Pacific Earthquake Engineering Research Center, 2008.
[30] C. Applied Technology, Quantification of building seismic performance factors, US Department of Homeland Security, FEMA, 2009.