پاکسازی خاک آلوده به گازوئیل با استفاده از سورفکتانت‌های شیمیایی و بیولوژیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران

2 پژوهشکده محیط زیست، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

امروزه آلودگی خاک توسط نفت خام و مشتقات آن از اهمیت بالایی برخوردار بوده به‌طوری که به یکی از اصلی‌ترین چالش‌های زیست‌محیطی در سطح جهان تبدیل شده‌است. هدف از این تحقیق، پاکسازی خاک آلوده به گازوئیل توسط فرآیند خاکشویی بهبود یافته توسط سورفکتانت‌های شیمیایی و بیولوژیکی در مقیاس آزمایشگاهی بوده است. بدین منظور از دو سورفکتانت‌ شیمیایی Triton X100، SDS و ترکیبی از آنها و همچنین سورفکتانت بیولوژیکی سنتز شده رامنولیپید استفاده شد. در این تحقیق که در یک ستون خاک از جنس پلکسی‌گلس با حجم تقریبی ml400 انجام شد، تاثیر پارامترهایی نظیر غلظت سورفکتانت، pH محلول، دانه‌بندی خاک، تغییر جهت جریان شستشو و غلظت آلاینده به عنوان متغیرهای مستقل بر پاکسازی خاک مورد بررسی قرار گرفت. در این پژوهش حداکثر راندمان حذف کل هیدروکربن‌های نفتی (TPH) از خاک (حاوی 10% رس و آلوده به mg/kg 10000 گازوئیل) به میزان %78 پس از 12 ساعت، در pH برابر با 7/8 و توسط سورفکتانت ترکیبی TX100-SDS (با نسبت اختلاط 80:20 و غلظت g/lit5) و دبی ml/min1/5 حاصل شد. اگرچه در این پژوهش بر اساس نتایج حاصل، رامنولیپید نسبت به سایر سورفکتانت‌های مصرفی، راندمان حذف کمتری داشت، اما به دلیل دارا بودن خاصیت زیست تخریب‌پذیری و همچنین سمیت پائین‌تر در مقایسه با سایر سورفکتانت‌های شیمیایی مورد استفاده به عنوان یک گزینه بالقوه پایدار، برای رسیدن به کاربرد موثر و اثربخشی بهتر، نیازمند بررسی و تحقیقات بیشتری می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Remediation of diesel contaminated soil using chemical and biological surfactants

نویسندگان [English]

  • Sahar Mansoury 1
  • Nader Mokhtarani 2
1 Civil And Environmental Engineering Faculty; Tarbiat Modares University
2 Civil and Environmental Engineering Faculty, Tarbiat Modares University
چکیده [English]

Today, soil pollution by crude oil and its derivatives is of great importance, and it has become one of the serious environmental challenges in the world. This study aimed to remediate diesel-contaminated soil by enhancing the soil-washing process using chemical and biological surfactants on a laboratory scale. For this purpose, the chemical surfactants of Triton X 100, SDS, and the synthesized natural surfactant of rhamnolipid were used. During this process, carried out in a Plexiglas column with an approximate volume of 400 ml, the effect of parameters such as surfactant concentration, solution pH, soil texture, flow direction, and pollutant concentration as independent variables on soil treatment was investigated. In this study, the maximum total petroleum hydrocarbonsremoval efficiency of 78% from contaminated soil (containing 10% clay and contaminated with 10,000diesel) was achieved after 12 hours of soil washing using a combined surfactant of TX100-SDS (mixing ratio of 80:20 and a concentration of 5) with a flow rate of 1.5at a pH of 7.8. Although in this research, rhamnolipid had a lower removal efficiency than other surfactants, due to its biodegradability and lower toxicity compared to other chemical surfactants used, as a potentially sustainable option to achieve efficient application and better effectiveness; it requires more investigation and research.

کلیدواژه‌ها [English]

  • Soil Flushing
  • Bio Surfactant
  • Chemical Surfactant
  • Diesel
  • Soil Pollution
[1] D. Hillel, J.L. Hatfield, D. Powlson, C. Rosenzweig, K. Scow, M. Singer, Encyclopedia of Soils in the Environment, 4 vols,  (2005).
[2] H.D. Sharma, K.R. Reddy, Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies, John Wiley & Sons, 2004.
[3] M. Taccari, V. Milanovic, F. Comitini, C. Casucci, M. Ciani, Effects of biostimulation and bioaugmentation on diesel removal and bacterial community, International Biodeterioration & Biodegradation, 66(1) (2012) 39-46.
[4] Z. Yao, J. Li, H. Xie, C. Yu, Review on remediation technologies of soil contaminated by heavy metals, Procedia Environmental Sciences, 16 (2012) 722-729.
[5] P. Gong, B.-M. Wilke, E. Strozzi, S. Fleischmann, Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils, Chemosphere, 44(3) (2001) 491-500.
[6] D.H. Moon, Y.-Y. Chang, M. Lee, A. Koutsospyros, I.-H. Koh, W.H. Ji, J.-H. Park, Assessment of soil washing for heavy metal contaminated paddy soil using FeCl 3 washing solutions, Environmental Geochemistry and Health, 43 (2021) 3343-3350.
[7] K.R. Reddy, K. Darko-Kagya, A.Z. Al-Hamdan, Electrokinetic remediation of pentachlorophenol contaminated clay soil, Water, Air, & Soil Pollution, 221 (2011) 35-44.
[8] G.M. Cole, Assessment and remediation of petroleum contaminated sites, CRC Press, 2018.
[9] K.A. Vu, C.N. Mulligan, An overview on the treatment of oil pollutants in soil using synthetic and biological surfactant foam and nanoparticles, International Journal of Molecular Sciences, 24(3) (2023) 1916.
[10] C.F. da Rosa, D.M. Freire, H.C. Ferraz, Biosurfactant microfoam: Application in the removal of pollutants from soil, Journal of Environmental Chemical Engineering, 3(1) (2015) 89-94.
[11] D. Huguenot, E. Mousset, E.D. van Hullebusch, M.A. Oturan, Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons, Journal of environmental management, 153 (2015) 40-47.
[12] P.S. Sales, M.A. Fernández, Synergism in the desorption of polycyclic aromatic hydrocarbons from soil models by mixed surfactant solutions, Environmental Science and Pollution Research, 23 (2016) 10158-10164.
[13] F. Gharibzadeh, R.R. Kalantary, S. Nasseri, A. Esrafili, A. Azari, Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process, Separation and Purification Technology, 168 (2016) 248-256.
[14] J. Gracida, J. Ortega‐Ortega, L.G. Torres B, M. Romero‐Avila, A. Abreu, Synthesis of Anionic Surfactant and Their Application in Washing of Oil‐Contaminated Soil, Journal of Surfactants and Detergents, 20(2) (2017) 493-502.
[15] S.A. Hanafiah, M.A. Mohamed, S. Caradec, N. Fatin-Rouge, Treatment of heavy petroleum hydrocarbons polluted soil leachates by ultrafiltration and oxidation for surfactant recovery, Journal of Environmental Chemical Engineering, 6(2) (2018) 2568-2576.
[16] M. Saeedi, L.Y. Li, J.R. Grace, Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from natural soil by combined non-ionic surfactants and EDTA as extracting reagents: Laboratory column tests, Journal of environmental management, 248 (2019) 109258.
[17] C. Liu, J.-H. Kwon, S.M. Prabhu, G.-S. Ha, M.A. Khan, Y.-K. Park, B.-H. Jeon, Efficiency of diesel-contaminated soil washing with different tween 80 surfactant concentrations, pH, and bentonite ratios, Environmental Research, 214 (2022) 113830.
[18] B. Barbati, L. Lorini, N. Amanat, M. Bellagamba, L. Galantini, M.P. Papini, Enhanced solubilization of strongly adsorbed organic pollutants using synthetic and natural surfactants in soil flushing: column experiment simulation, Journal of Environmental Chemical Engineering, 11(5) (2023) 110758.
[19] M.A. Lominchar, D. Lorenzo, A. Romero, A. Santos, Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions, Journal of Chemical Technology & Biotechnology, 93(5) (2018) 1270-1278.
[20] A.A. Befkadu, C. Quanyuan, Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: a review, Pedosphere, 28(3) (2018) 383-410.
[21] P. Parekh, A. Parmar, S. Chavda, P. Bahadur, Modified calcium alginate beads with sodium dodecyl sulfate and clay as adsorbent for removal of methylene blue, Journal of dispersion science and technology, 32(10) (2011) 1377-1387.
[22] Z. Shi, J. Chen, J. Liu, N. Wang, Z. Sun, X. Wang, Anionic–nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil, Environmental Science and Pollution Research, 22 (2015) 12769-12774.
[23] M. Muñoz-Morales, M. Braojos, C. Sáez, P. Cañizares, M. Rodrigo, Remediation of soils polluted with lindane using surfactant-aided soil washing and electrochemical oxidation, Journal of hazardous materials, 339 (2017) 232-238.
[24] X. Zhu, D. Zhou, Y. Wang, L. Cang, G. Fang, J. Fan, Remediation of polychlorinated biphenyl-contaminated soil by soil washing and subsequent TiO 2 photocatalytic degradation, Journal of soils and sediments, 12 (2012) 1371-1379.
[25] W. Ji, C. Abou Khalil, M.P. Jayalakshmamma, L. Zhao, M.C. Boufadel, Behavior of surfactants and surfactant blends in soils during remediation: A review, Environmental Challenges, 2 (2021) 100007.
[26] J. Radulovic, K. Sefiane, M.E. Shanahan, Investigation of spreading of surfactant mixtures, Chemical engineering science, 64(14) (2009) 3227-3235.
[27] R. Khalladi, O. Benhabiles, F. Bentahar, N. Moulai-Mostefa, Surfactant remediation of diesel fuel polluted soil, Journal of Hazardous Materials, 164(2-3) (2009) 1179-1184.
[28] C. Mathlouthi, M. Kacem, Z. Mesticou, P. Dubujet, Polluted soil leaching: unsaturated conditions and flow rate effects, Eurasian Journal of Soil Science, 6(2) (2017) 161-167.
[29] E.Salehian, A. Khodadadi, h. Gangidoust,  Feasibility of remediation of diesel contaminated soils using surfactants by use of experimental pilot, Journal of Environmental Sciences and Technology, 14 (2012) 73-82. (in Persian) 
[30] A. Karthick, B. Roy, P. Chattopadhyay, A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil, Journal of environmental management, 243 (2019) 187-205.
[31] G. Li, S. Guo, J. Hu, The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil, Chemical Engineering Journal, 286 (2016) 191-197.