بررسی فشار آب منفذی اضافی در آزمایش نفوذ مخروط در خاک‌‌های رسی اشباع زهکشی‌‌نشده

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران

چکیده

گستردگی کاربرد آزمایش نفوذ مخروط به‌‌علت سرعت عملیات آن در شناسایی لایه‌‌های خاک و ویژگی‌‌های آن، باعث شده‌است که روش‌های مختلف تحلیلی برای مطالعه‌‌ی این آزمایش به‌‌وجود آید. اندازه‌‌گیری فشار آب منفذی اضافی در طی آزمون نفوذ مخروط نقش به‌‌سزایی را در تعیین خصوصیات و پارامترهای مهندسی خاک‌های رسی می‌‌تواند ایفا کند. در بسیاری از مسائل ژئوتکنیکی، وضعیت تنش اولیه‌‌ی موجود در زمین، پارامتر مهمی است که برای طراحی و تحلیل باید شناخته شود؛ ضریب فشار جانبی در حالت سکون، K0، نیز برای سال‌ها توسط مهندسین ژئوتکنیک مورد مطالعه قرار گرفته‌‌است، زیرا پارامتری ضروری در طراحی و تحلیل بسیاری از مسائل ژئوتکنیکی مانند شمع‌‌‌ها و پایداری شیب‌‌ها است. با توجه به کمبود مطالعات جامع برروی خاک‌‌های رسی، اهمیت شناسایی رفتار این خاک‌‌ها وهمچنین محدودیت‌‌آزمون‌‌های آزمایشگاهی، در این پژوهش با مدل‌‌سازی عددی آزمایش نفوذ مخروط در خاک‌‌های رسی اشباع در شرایط زهکشی‌‌نشده، تأثیر ضریب فشار جانبی و تنش‌‌های موثر قائم اولیه بر فشار آب منفذی ایجاد شده براثر نفوذ مخروط، بررسی و رابطه‌‌ای‌‌ بین فشارهای آب منفذی اضافی در محل‌‌های u2 وu1 و همچنین u2 و u3 براساس این دو پارامتر ارائه شده‌‌است. برای مدل‌‌سازی در این تحقیق، از نرم‌‌‌‌افزار فلک دوبعدی مبتنی بر روش تفاضل محدود و مدل رفتاری کم‌‌-کلی‌‌اصلاح‌‌شده استفاده شده‌‌است. برای صحت‌‌سنجی، نتایج به‌‌دست‌‌آمده از مدل‌‌سازی عددی نیز با نتایج اندازه‌‌گیری‌‌ها در آزمایش‌‌ برجای نفوذ مخروط مقایسه گردیده‌‌‌‌‌‌است. نتایج به‌‌دست آمده نشان داد که با افزایش هریک از پارامترهای ضریب فشار جانبی و تنش موثر قائم،  اضافه فشار آب منفذی در هر سه محل اندازه‌‌گیری فشار آب منفذی افزایش می‌‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Excess Pore Water Pressure in Cone Penetration Test in Saturated Clayey Soils under Undrained Condition

نویسندگان [English]

  • Mahdiyeh Fakhimi Akmal
  • Mahammad Mehdi Ahmadi
department of civil engineering at sharif university of technology, tehran, iran
چکیده [English]

The widespread use of the cone penetration test in geotechnical engineering, due to its quick identification of soil layers and properties, has led to the development of various analytical methods for interpreting this test. Monitoring excess pore water pressure during the piezocone penetration test can be crucial for assessing the properties and engineering parameters of clayey soils. The initial stresses in the ground and the coefficient of lateral earth pressure at rest, K0, are important parameters needed for the design and analysis of various geotechnical problems such as piles, and slope stabilities. Due to the limited research on clayey soils, the significance of understanding their behavior, and the limitations of laboratory experiments, this study investigates soil behavior via numerical modeling of cone penetration tests in saturated clay with undrained conditions. In this study, the effect of the coefficient of lateral earth pressure and initial effective vertical stresses on pore water pressure has been investigated. Additionally, the correlations between excess pore water pressures at points u2 and u1, as well as u2 and u3, have been outlined. A modified Cam-Clay constitutive model was employed in all numerical analyses using FLAC2D software. The validation of proposed relationships was also addressed using the database of field tests available in the literature provided by different researchers. The obtained results indicated that as each parameter of lateral pressure coefficient and vertical effective stress increased, the excess pore water pressure also increased at all three locations where pore water pressure is measured.

کلیدواژه‌ها [English]

  • Numerical Modeling
  • Piezocone Penetration Test
  • Vertical Effective Stress
  • Coefficient of Lateral Earth Pressure
  • Modified Cam - Clay Model
[1]      A. Ghanbari, Field explorations in geotechnical engineering, First Edition. Kharazmi University Publication, (1388), in Persian.
[2]      P. U. Kurup, G. Z. Voyiadjis, and M. T. Tumay, Calibration chamber studies of piezocone test in cohesive soils, Journal of Geotechnical Engineering, doi: 10.1061/(ASCE)0733-9410(1994)120:1(81) 120(1) (1994) 81–107.
[3]      B. Chen, and P. Mayne, Profiling the overconsolidation ratio of clays by piezocone tests, School of Civil and Environmental Engineering, Georgia Institute of Technology, Thesis, 1994.
[4]      N. Teerachaikulpanich, S. Okumura, K. Matsunaga, and H. Ohta, Estimation of coefficient of earth pressure at rest using modified oedometer test, Soils and Foundations, doi: 10.3208/sandf.47.349, 47(2) (2007) 349-360.
[5]      J. Peuchen, Estimation of u1/u2 conversion factor for piezocone,  in Proceedings of the 2nd International Symposium on Cone Penetration Testing (CPT’10), (2010)  1-8.
[6]      E. Keshmiri and M. M. Ahmadi, Interpretation of CPT in unsaturated sands under drained conditions: a numerical study, International Journal for Numerical and Analytical Methods in Geomechanics, doi: 10.1002/nag.3284, 45(18) (2021) 2732-2755.
[7]      D. M. Moug, R. W. Boulanger, J. T. DeJong., and R. A. Jaeger, Axisymmetric simulations of cone penetration in saturated clay, Journal of Geotechnical and Geoenvironmental Engineering, doi: 10.1061/(asce)gt.1943-5606.0002024, 145(4) (2019) 04019008.
[8]      J. P. Sully, and R. C. Campanella, Effect of lateral stress on CPT penetration pore pressures. Journal of Geotechnical Engineering, doi: 10.1061/(ASCE)0733-9410(1991)117:7(1082),  117(7) (1991) 1082-1088.
[9]      M. Abu-Farsakh, and M. T. Tumay, Numerical parametric study of piezocone penetration test in clays, International Journal of Geomechanics, doi: 10.1061/(ASCE)1532-3641(2003)3:2(170),  3(2) (2003) 170-181.
[10]    T. G. Ha, J. H. Kim, J. Y. Kim, and C. K. Chung, Experimental estimation of distribution of excess pore pressure by cone penetration, 2nd International Symposium on Cone Penetration Testing, CA, USA, (2010) 2-15
[11]    M. R. Khodayari, and M. M. Ahmadi, Excess pore water pressure along the friction sleeve of a piezocone penetrating in clay: numerical study, International Journal of Geomechanics, doi: 10.1061/(asce)gm.1943-5622.0001702, 20(7) (2020) 04020100.
[12]    M. J. Mashinchian, and M. M. Ahmadi, “Numerical study of the piezocone test in sandy soil under different drainage conditions using a hypoplastic constitutive model,” International Journal of Geomechanics, doi: 10.1061/ijgnai.gmeng-8812, 24(4) (2024).
[13]    R. Nemati, Numerical modeling of cone penetration test, Technical and Engineering Faculty, Tarbiat Modares University, (1388), in Persian.
[14]    Itasca Consulting Group Inc., Flac v.7 Fast Lagrangian Analysis of Continua Manual, Itasca, (2005).
[15]    ASTM D5778, Standard Test Method for electronic friction cone and piezocone penetration testing of Soils, in Annual Book of ASTM Standards, (2014) 1–21.
[16]    J. T. Yi, S. H. Goh, F. H. Lee, and M. F. Randolph, A numerical study of cone penetration in fine-grained soils allowing for consolidation effects, Geotechnique, doi: 10.1680/geot.8.P.155, 62(8) (2012) 707-719.
[17]    M. F. Chang, C. I. Teh, and L. F. Cao, Critical state strength parameters of saturated clays from the modified cam clay model, Canadian Geotechnical Journal, doi: 10.1139/t99-050, 36(5) (1999) 876-890
[18]    A. A. Golestani Dariani, and M. M. Ahmadi, Undrained shear strength and in situ horizontal effective stress from piezocone penetration test measurements in clayey soils: new approach, International Journal of Geomechanics, doi: 10.1061/(asce)gm.1943-5622.0001210, 18(9) (2018) 04018097
[19]    J. A. Schneider, B. M. Lehane, and F. Schnaid, Velocity effects on piezocone measurements in normally and over consolidated clays, International Journal of Physical Modelling in Geotechnics, doi: 10.1680/ijpmg.2007.070202, 7(2) (2007) 23-34.
[20]    D. Sheng, R. Kelly, J. Pineda, and L. Bates, Numerical study of rate effects in cone penetration test, In 3rd International Symposium on Cone Penetration Testing, (2014) 419-428.
[21]    J. A. Schneider, M. F. Randolph, P. W. Mayne, and N. R. Ramsey, Analysis of factors influencing     soil classification using normalized piezocone tip resistance and pore pressure parameters, Journal of Geotechnical and Geoenvironmental Engineering, doi: 10.1061/(asce)1090-0241(2008)134:11(1569), 134(11) (2008) 1569-1586.
[22]    I. M. S. Finnie, and M. F. Randolph, Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments, Proceedings of International Conference on Behaviour of Offshore Structures, Boston, MA, (1994) 217–230.
[23]    P. W. Mayne, and F. H. Kulhawy, Ko-OCR relationships in soil, Journal of the Geotechnical Engineering Division, doi: 10.1061/ajgeb6.0001306, 108(6) (1982) 851-872.
[24]    K. Kim, and R. Salgado, Interpretation of cone penetration tests in cohesive soils, School of Civil Engineering Purdue University, doi.org/10.5703/1288284313387,  (2006).
[25]    T. Kim, N.-K. Kim, M. T. Tumay, and W. Lee, Spatial distribution of excess pore-water pressure due to piezocone penetration in overconsolidated clay, Journal of Geotechnical and Geoenvironmental Engineering, doi: 10.1061/(asce)1090-0241(2007)133:6(674), 133(6) (2007) 674-683.
[26]    B. Chen, and P. Mayne, Statistical relationships between piezocone measurements and stress history of clays, Canadian Geotechnical Journal, doi: 10.1139/t96-070, 33(3) (1996) 488-498.
[27]    J. M. Keaveny, and J. K. Mitchell, Strength of fine grained soils using the piezocone,  In Use of in Situ Tests in Geotechnical Engineering, ASCE, (1988) 668–685.
[28]    P. W. Mayne, and J. Peuchen, Evaluation of CPTU Nkt cone factor for undrained strength of clays, In Cone Penetration Testing 2018, (2018) 423–429.
[29]    P. W. Mayne, Cone penetration testing, Transportation Research Board, National Cooperative HIighay Research Program, A Synthesis of Highway Practice, 368 (2007).