[1] A. Ghanbari, Field explorations in geotechnical engineering, First Edition. Kharazmi University Publication, (1388), in Persian.
[2] P. U. Kurup, G. Z. Voyiadjis, and M. T. Tumay, Calibration chamber studies of piezocone test in cohesive soils, Journal of Geotechnical Engineering, doi: 10.1061/(ASCE)0733-9410(1994)120:1(81) 120(1) (1994) 81–107.
[3] B. Chen, and P. Mayne, Profiling the overconsolidation ratio of clays by piezocone tests, School of Civil and Environmental Engineering, Georgia Institute of Technology, Thesis, 1994.
[4] N. Teerachaikulpanich, S. Okumura, K. Matsunaga, and H. Ohta, Estimation of coefficient of earth pressure at rest using modified oedometer test, Soils and Foundations, doi: 10.3208/sandf.47.349, 47(2) (2007) 349-360.
[5] J. Peuchen, Estimation of u1/u2 conversion factor for piezocone, in Proceedings of the 2nd International Symposium on Cone Penetration Testing (CPT’10), (2010) 1-8.
[6] E. Keshmiri and M. M. Ahmadi, Interpretation of CPT in unsaturated sands under drained conditions: a numerical study, International Journal for Numerical and Analytical Methods in Geomechanics, doi: 10.1002/nag.3284, 45(18) (2021) 2732-2755.
[7] D. M. Moug, R. W. Boulanger, J. T. DeJong., and R. A. Jaeger, Axisymmetric simulations of cone penetration in saturated clay, Journal of Geotechnical and Geoenvironmental Engineering, doi: 10.1061/(asce)gt.1943-5606.0002024, 145(4) (2019) 04019008.
[8] J. P. Sully, and R. C. Campanella, Effect of lateral stress on CPT penetration pore pressures. Journal of Geotechnical Engineering, doi: 10.1061/(ASCE)0733-9410(1991)117:7(1082), 117(7) (1991) 1082-1088.
[9] M. Abu-Farsakh, and M. T. Tumay, Numerical parametric study of piezocone penetration test in clays, International Journal of Geomechanics, doi: 10.1061/(ASCE)1532-3641(2003)3:2(170), 3(2) (2003) 170-181.
[10] T. G. Ha, J. H. Kim, J. Y. Kim, and C. K. Chung, Experimental estimation of distribution of excess pore pressure by cone penetration, 2nd International Symposium on Cone Penetration Testing, CA, USA, (2010) 2-15
[11] M. R. Khodayari, and M. M. Ahmadi, Excess pore water pressure along the friction sleeve of a piezocone penetrating in clay: numerical study, International Journal of Geomechanics, doi: 10.1061/(asce)gm.1943-5622.0001702, 20(7) (2020) 04020100.
[12] M. J. Mashinchian, and M. M. Ahmadi, “Numerical study of the piezocone test in sandy soil under different drainage conditions using a hypoplastic constitutive model,” International Journal of Geomechanics, doi: 10.1061/ijgnai.gmeng-8812, 24(4) (2024).
[13] R. Nemati, Numerical modeling of cone penetration test, Technical and Engineering Faculty, Tarbiat Modares University, (1388), in Persian.
[14] Itasca Consulting Group Inc., Flac v.7 Fast Lagrangian Analysis of Continua Manual, Itasca, (2005).
[15] ASTM D5778, Standard Test Method for electronic friction cone and piezocone penetration testing of Soils, in Annual Book of ASTM Standards, (2014) 1–21.
[16] J. T. Yi, S. H. Goh, F. H. Lee, and M. F. Randolph, A numerical study of cone penetration in fine-grained soils allowing for consolidation effects, Geotechnique, doi: 10.1680/geot.8.P.155, 62(8) (2012) 707-719.
[17] M. F. Chang, C. I. Teh, and L. F. Cao, Critical state strength parameters of saturated clays from the modified cam clay model, Canadian Geotechnical Journal, doi: 10.1139/t99-050, 36(5) (1999) 876-890
[18] A. A. Golestani Dariani, and M. M. Ahmadi, Undrained shear strength and in situ horizontal effective stress from piezocone penetration test measurements in clayey soils: new approach, International Journal of Geomechanics, doi: 10.1061/(asce)gm.1943-5622.0001210, 18(9) (2018) 04018097
[19] J. A. Schneider, B. M. Lehane, and F. Schnaid, Velocity effects on piezocone measurements in normally and over consolidated clays, International Journal of Physical Modelling in Geotechnics, doi: 10.1680/ijpmg.2007.070202, 7(2) (2007) 23-34.
[20] D. Sheng, R. Kelly, J. Pineda, and L. Bates, Numerical study of rate effects in cone penetration test, In 3rd International Symposium on Cone Penetration Testing, (2014) 419-428.
[21] J. A. Schneider, M. F. Randolph, P. W. Mayne, and N. R. Ramsey, Analysis of factors influencing soil classification using normalized piezocone tip resistance and pore pressure parameters, Journal of Geotechnical and Geoenvironmental Engineering, doi: 10.1061/(asce)1090-0241(2008)134:11(1569), 134(11) (2008) 1569-1586.
[22] I. M. S. Finnie, and M. F. Randolph, Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments, Proceedings of International Conference on Behaviour of Offshore Structures, Boston, MA, (1994) 217–230.
[23] P. W. Mayne, and F. H. Kulhawy, Ko-OCR relationships in soil, Journal of the Geotechnical Engineering Division, doi: 10.1061/ajgeb6.0001306, 108(6) (1982) 851-872.
[24] K. Kim, and R. Salgado, Interpretation of cone penetration tests in cohesive soils, School of Civil Engineering Purdue University, doi.org/10.5703/1288284313387, (2006).
[25] T. Kim, N.-K. Kim, M. T. Tumay, and W. Lee, Spatial distribution of excess pore-water pressure due to piezocone penetration in overconsolidated clay, Journal of Geotechnical and Geoenvironmental Engineering, doi: 10.1061/(asce)1090-0241(2007)133:6(674), 133(6) (2007) 674-683.
[26] B. Chen, and P. Mayne, Statistical relationships between piezocone measurements and stress history of clays, Canadian Geotechnical Journal, doi: 10.1139/t96-070, 33(3) (1996) 488-498.
[27] J. M. Keaveny, and J. K. Mitchell, Strength of fine grained soils using the piezocone, In Use of in Situ Tests in Geotechnical Engineering, ASCE, (1988) 668–685.
[28] P. W. Mayne, and J. Peuchen, Evaluation of CPTU Nkt cone factor for undrained strength of clays, In Cone Penetration Testing 2018, (2018) 423–429.
[29] P. W. Mayne, Cone penetration testing, Transportation Research Board, National Cooperative HIighay Research Program, A Synthesis of Highway Practice, 368 (2007).