[1] K. Iwashita, M. Oda, Micro-deformation mechanism of shear banding process based on modified distinct element method, Powder technology, 109(1-3) (2000) 192-205.
[2] H. Matsuoka, Stress-strain relationships of sands based on the mobilized plane, Soils and Foundations, 14(2) (1974) 47-61.
[3] S.N. NASSER, On behavior of granular materials in simple shear, Soils and Foundations, 20(3) (1980) 59-73.
[4] P. Newland, B. Allely, Volume changes in drained tests on granular materials, Geotechnique, 7(1) (1957) 17-34.
[5] P.W. Rowe, The stress-dilatancy relation for static equilibrium of an assembly of particles in contact, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339) (1962) 500-527.
[6] J. Desrues, R. Chambon, M. Mokni, F. Mazerolle, Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography, Géotechnique, 46(3) (1996) 529-546.
[7] R.J. Finno, W.W. Harris, M.A. Mooney, G. Viggiani, Strain localization and undrained steady state of sand, Journal of Geotechnical Engineering, 122(6) (1996) 462-473.
[8] H.-B. Mühlhaus, I. Vardoulakis, The thickness of shear bands in granular materials, Geotechnique, 37(3) (1987) 271-283.
[9] F. Tatsuoka, S. Nakamura, C. HUANG, K. Tani, Strength anisotropy and shear band direction in plane strain tests of sand, Soils and foundations, 30(1) (1990) 35-54.
[10] P. Vermeer, The orientation of shear bands in biaxial tests, Geotechnique, 40(2) (1990) 223-236.
[11] D.M. Wood, Experimental observations of shear band patterns in direct shear tests, University of Cambridge Engineering Department, 1982.
[12] T. Yoshida, F. Tatsuoka, M. Siddiquee, Y. Kamegai, C.-S. Park, Shear banding in sands observed in plane strain compression, in: International workshop on and bifurcation theory for soils and rocks, 1994, pp. 165-179.
[13] H. Haeri, V. Sarfarazi, Z. Zhu, M.F. Marji, A. Masoumi, Investigation of shear behavior of soil-concrete interface, Smart Structures and Systems, 23(1) (2019) 81-90.
[14] H. Haeri, V. Sarfarazi, M.F. Marji, Investigating the tensile strength of concrete-gypsum interface using the ring type bi-material specimens, Arabian Journal of Geosciences, 14 (2021) 1-18.
[15] A. Dalirnasab, M. Fatehi Marji, H.R. Nejati, M. Mohebbi, Investigating the effects of porosity on the strength and mechanical behaviors of geo-materials’ specimens, Journal of Analytical and Numerical Methods in Mining Engineering, (2024).
[16] P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies, geotechnique, 29(1) (1979) 47-65.
[17] O. Catherine, C. Liang, Three-dimensional discrete element simulations of direct shear tests, in: Numerical Modeling in Micromechanics via Particle Methods, Proceedings of the 2nd International PFC Symposium, Japan, 2004, pp. 379-382.
[18] J. Wang, J. Dove, M. Gutierrez, Discrete-continuum analysis of shear banding in the direct shear test, Géotechnique, 57(6) (2007) 513-526.
[19] J. Wang, M. Gutierrez, Discrete element simulations of direct shear specimen scale effects, Géotechnique, 60(5) (2010) 395-409.
[20] J. Härtl, J.Y. Ooi, Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments, Powder Technology, 212(1) (2011) 231-239.
[21] X. Zhao, Microscale Analysis of Direct Shear Test Using Discrete Numerical Method, in: Instrumentation, Testing, and Modeling of Soil and Rock Behavior, 2011, pp. 91-98.
[22] J. Kozicki, M. Niedostatkiewicz, J. Tejchman, H.-B. Muhlhaus, Discrete results of a direct shear test for granular materials versus FE results, Granular Matter, 15(5) (2013) 607-627.
[23] A.A. Mirghasemi, M. Naeij, The effect of initial elongation of elliptical particles on macro–micromechanical behavior during direct shear test, Procedia engineering, 102 (2015) 1476-1483.
[24] A. Salazar, E. Sáez, G. Pardo, Modeling the direct shear test of a coarse sand using the 3D Discrete Element Method with a rolling friction model, Computers and Geotechnics, 67 (2015) 83-93.
[25] Y. Jiang, Y. Li, Discrete Element Simulation of the Direct Shear Test of Sandy Soil, in: International Conference on Discrete Element Methods, Springer, 2016, pp. 801-810.
[26] S.P.K. Kodicherla, G. Gong, C.K. Moy, L. Fan, K. Kristian, Direct Shear Test Simulations Using DEM, in: Geotechnical Characterization and Modelling, Springer, 2020, pp. 849-855.
[27] M. Nitka, A. Grabowski, Shear band evolution phenomena in direct shear test modelled with DEM, Powder Technology, 391 (2021) 369-384.
[28] Y.-r. Xu, Y. Xu, Numerical simulation of direct shear test of rockfill based on particle breaking, Acta Geotechnica, (2021) 1-12.
[29] P. Cundall, Distinct element models of rock and soil structure, Analytical and computational methods in engineering rock mechanics, (1987) 129-163.
[30] R. White, K. Stone, R. Jewell, Effect of particle size on development in model tests on sand, in: International conference centrifuge 94, 1994, pp. 817-822.
[31] K. Iwashita, M. Oda, Rolling resistance at contacts in simulation of shear band development by DEM, Journal of engineering mechanics, 124(3) (1998) 285-292.
[32] S. Abe, H. Van Gent, J.L. Urai, DEM simulation of normal faults in cohesive materials, Tectonophysics, 512(1-4) (2011) 12-21.
[33] M. Jiang, H. Yan, H. Zhu, S. Utili, Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses, Computers and Geotechnics, 38(1) (2011) 14-29.
[34] E. Delfosse-ribay, I. Djeran-Maigre, R. Cabrillac, D. Gouvenot, Shear modulus and damping ratio of grouted sand, Soil Dynamics and Earthquake Engineering, 24 (2004) 461-471.
[35] Y. Chang, C. Lee, W. Huang, W. Hung, W. Huang, M. Lin, Y. Chen, Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand, Engineering Geology, 184 (2015) 52-70.