عملکرد لرزه ای قاب‌های ساختمانی دارای مهاربند کمانش ناپذیر تحت زلزله های حوزه دور و نزدیک با و بدون پالس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشگاه والیت، ایرانشهر، ایران

2 گروه مهندسی عمران، دانشگاه صنعتی قوچان، قوچان، ایران.

چکیده

مهاربندهای کمانش ناپذیر به عنوان عناصر مقاوم در برابر بارهای محوری در کشش و فشار شناخته می‌شوند. مطالعه حاضر بر بررسی عملکردی رفتار لرزه‌ای قاب ساختمانی مهاربندی شده با مهاربند کمانش ناپذیر با ارتفاع کم تا متوسط تحت زمین لرزه‌های دور و نزدیک با و بدون پالس از گسل متمرکز شده است. در این تحقیق قاب‌های ساختمانی دارای اتصالات تیر به ستون مفصلی در 4 و 8 طبقه مورد مطالعه قرار‌ گرفته‌اند. تحلیل دینامیکی افزایشی برای 14 رکورد زلزله از هر سه حوزه انجام شده است. نتایج بدست آمده از تحلیل دینامیکی افزایشی برای قاب‌های مورد تحقیق تحت اعمال رکوردهای زلزله با شرایط و ویژگی‌های متاثر از فاصله با محل وقوع زلزله، آسیب پذیری قاب‌های 4 و 8 طبقه را در برابر حرکات زمین در هر سه حوزه قرار گیری از محل گسل و برای پارامتر آسیب جابجایی نسبی طبقه نشان داده است. همچنین نتایج نشان داده‌اند که اعضای مهاربندی آسیب پذیرترین اعضای این قاب هستند. میانه شتاب برای سازه 4 طبقه در سطوح عملکردی استفاده بدون وقفه، ایمنی جانی و آستانه فروریزش و در تامین شرایط عملکردی برای پارامتر آسیب جابجایی نسبی طبقه در زمین لرزه‌های حوزه دورg 30/0 وg 85/0 و g05/1، برای حوزه نزدیک دارای پالسg 40/0 و g 75/0 و g95/0 و برای حوزه نزدیک بدون پالس(به ترتیب)g 30/0 وg 80/0 و g00/1 بدست آمده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Performance of Building Frames with Buckling Resistance Braces Under Far and Near Field with and without Pulse Earthquakes

نویسندگان [English]

  • Abdol ghaium Dehvari 1
  • mohsen khazaei 2
1 Assistant Professor Department of Civil Engineering, University of Velayat, Iranshahr, Sistan and Baluchestan, Iran
2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering Science, Quchan University of Technology, Quchan, Iran
چکیده [English]

Buckling Resistance braces are known as elements which resistant to axial loads in tension and compression. The present study is focused on the seismic behavior of low to medium height of braced building frame, which equipped with non-buckling braces under far and near fault with and without pulse earthquakes. In this research, building frames with pinned beam-to-column connections in 4 and 8 stories have been studied. Incremental dynamic analysis has been performed for 14 earthquake records from all three domains. The results obtained from the incremental dynamic analysis for the studied frames under the selected earthquake records with the conditions and characteristics affected by the distance from the earthquake site, has shown the vulnerability of 4 and 8-story frames with pinned beam-to-column joints against ground movements in all three areas distance from location of the fault and for the damage parameter of inter story drift ratio. Also, the results have shown that the bracing members are the most vulnerable members of this frame. The median acceleration that obtained to a 4-story structure and for the performance levels of immediate occupancy, life safety and collapse threshold to meet the functional conditions of the inter story drift ratio as damage parameter in far-field earthquakes are 0. 30 g, 0. 85 g and 1. 05 g, and 0. 40 g, 0. 75 g, and 0. 95 g were obtained for the near field with pulse, and 0. 30 g, 0. 80 g, and 1. 00 g for the near field without pulse, respectively.

کلیدواژه‌ها [English]

  • Buckling-Resistant Brace
  • Fragility Curve
  • Progressive Seismic Analysis
  • Seismic Performance Levels
  • Far and Near Field Earthquakes
[1] A. Fayeq Ghowsi, D. Ranjan Sahoo, Seismic response of SMA-based self-centering buckling-restrained braced frames under near-fault ground motions, Soil Dynamics and Earthquake Engineering, 139 (2020).
[2] LJ. Jia, Y. Dong, H. Ge, K. Kondo, P. Xiang P. Experimental study on high-performance buckling[1]restrained braces with perforated core plates. Int J Struct Stabil Dynam, 19(1) (2019) 1940004.
[3] HH. Khoo, KC. Tsai, CY. Tsai, HJ. Wang. Bidirectional substructure pseudo dynamic tests and analysis of a full[1]scale two-story buckling-restrained braced frame. Earthq Eng Struct Dynam, 2016;45(7): 1085–107.
[4] E. Junda, S. Leelataviwat , P. Doung . Cyclic testing and performance evaluation of buckling-restrained knee[1]braced frames. J Constr Steel Res, 148 (2018) 154–64.
[5] MS. Pandikkadavatha, DR. Sahoo. Cyclic testing of short-length buckling-restrained braces with detachable casings. Earthq Struct, 10(3) (2016) 699–716.
[6] C. Avci-Karatas, OC. Celik, Yalcin C. Experimental investigation of aluminum alloy and steel core buckling restrained braces (BRBs). Int J Steel Struct, 18(2) (2018) 650–73.
[7] S. Zaruma, LA. Fahnestock. Assessment of design parameters influencing seismic collapse performance of buckling-restrained braced frames. Soil Dynam Earthq Eng, 113(10) (2018) 35–46.
[8] M. Razi, M. Gerami, R. Vahdani and F. Farrokh Shahi, Seismic Fragility Assessment of Steel SMRF Structures under Various Types of Near and Far Fault Ground Motions, Journal of Rehabilitation in Civil Engineering, 7(2) (2019) 86-100.
[9] FEMA P 695. Quantification of Building Seismic Performance Factors. Washington, D. C. Federal Emergency Management Agency, USA, (2009).
[10] YO. Ozkılıç, MB. Bozkurt, C. Topkaya. Evaluation of seismic response factors for BRBFs using FEMA P695 methodology. J Constr Steel Res, 151 (2018) 41–57.
[11] RS. Dipti, C. Shih-Ho, Performance-based plastic design method for buckling-restrained braced frames, Engineering Structures, 32 (2010) 2950-2958.
[12] J. Kim, J. Park, and T. Lee, Sensitivity analysis of steel buildings subjected to column loss, Engineering Structures, 33(2) (2011) 421-432.
[13] Q. Canxing, Z. Yichen, L. Han, Q. Bing, H. Hetao, T. Li, Seismic performance of Concentrically Braced Frames with non-buckling braces, Engineering Structures, 154 (2018) 93-102.
[14] Z. Minjee, OpenSeesPy Documentation, Release 3.4.0.7, Apr 02, 2023, Web Site: https: //OpenSeesPy. readthedocs. io/en/latest/.
[15] ASCE/SEI 7-16. Minimum design loads for buildings and other structures. VA: American Society of Civil Engineering; (2016).
[16] ANSI/AISC 341-16. Seismic provisions for structural steel buildings. Illinois: American Institute of Steel Construction, (2016).
[17] FEMA 356. Pre-Standard and Commentary for the Seismic Rehabilitation of Buildings. Washington, DC: Federal Emergency Management Agency, (2000).
[18] ASCE standard, ASCE/SEI 41-17, Seismic Evaluation and Retrofit of Existing Buildings. RV: American Society of Civil Engineers, 2017.
[19] S. Merritt, CM. Uang, Benzoin G. Sub assemblage Testing of Star Seismic Buckling Restrained Braces. TR 2003/04. University of California at San Diego, La Jolla, C. A., (2003).
[20] PEER Ground Motion Database, Pacific Earthquake Engineering Research Centre, Web Site: http: //peer. Berkeley. edu/peer_ground_motion_database.