[1] S. Ellis, T. Mellor, Soils and environment, Routledge, 2002.
[2] R. Lal, Challenges and opportunities in soil organic matter research, European Journal of Soil Science, 60(2) (2009) 158-169.
[3] F. Chen, D.E. Kissel, L.T. West, W. Adkins, Field‐scale mapping of surface soil organic carbon using remotely sensed imagery, Soil Science Society of America Journal, 64(2) (2000) 746-753.
[4] M. Ladoni, H.A. Bahrami, S.K. Alavipanah, A.A. Norouzi, Estimating soil organic carbon from soil reflectance: a review, Precision Agriculture, 11 (2010) 82-99.
[5] X. He, L. Yang, A. Li, L. Zhang, F. Shen, Y. Cai, C. Zhou, Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images, Catena, 205 (2021) 105442.
[6] G.S. Bhunia, P. Kumar Shit, H.R. Pourghasemi, Soil organic carbon mapping using remote sensing techniques and multivariate regression model, Geocarto International, 34(2) (2019) 215-226.
[7] H. Jenny, Factors of soil formation: a system of quantitative pedology, Courier Corporation, 1994.
[8] H. Emami, Investigation the effects of aspect and degree of slope on soil quality in the South East of Mashhad, Journal of Water and Soil Conservation, 23(2) (2016) 301-310, (in Persian).
[9] J. Kumhálová, F. Kumhála, M. Kroulík, Š. Matějková, The impact of topography on soil properties and yield and the effects of weather conditions, Precision Agriculture, 12 (2011) 813-830.
[10] S. Singh, Understanding the role of slope aspect in shaping the vegetation attributes and soil properties in Montane ecosystems, Tropical Ecology, 59(3) (2018) 417-430.
[11] S. Jakšić, J. Ninkov, S. Milić, J. Vasin, M. Živanov, D. Jakšić, V. Komlen, Influence of slope gradient and aspect on soil organic carbon content in the region of Niš, Serbia, Sustainability, 13(15) (2021) 8332.
[12] P.H. Walker, Contributions to the understanding of soil and landscape relationships, Soil Research, 27(4) (1989) 589-605.
[13] R.C. Dalal, R.J. Henry, Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry, Soil Science Society of America Journal, 50(1) (1986) 120-123.
[14] F. Pierson, D. Mulla, Aggregate stability in the Palouse region of Washington: effect of landscape position, Soil Science Society of America Journal, 54(5) (1990) 1407-1412.
[15] W. Cheng, R. Virginia, S.F. Oberbauer, C.T. Gillespie, J.F. Reynolds, J. Tenhunen, Soil nitrogen, microbial biomass, and respiration along an arctic toposequence, Soil Science Society of America Journal, 62(3) (1998) 654-662.
[16] C.f. Garten, W.M. Post, P.J. Hanson, L.W. Cooper, Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains, Biogeochemistry, 45 (1999) 115-145.
[17] M. Cox, P.D. Gerard, M. Wardlaw, M. Abshire, Variability of selected soil properties and their relationships with soybean yield, Soil Science Society of America Journal, 67(4) (2003) 1296-1302.
[18] K.J. Forsberg, A. Reyes, B. Wang, E.M. Selleck, M.O. Sommer, G. Dantas, The shared antibiotic resistome of soil bacteria and human pathogens, science, 337(6098) (2012) 1107-1111.
[19] H. Khademi, H. Khayyer, Landscape-scale Variability of Selected Surface Soil Quality Attributes in a Rangeland in Semirom Area, Isfahan University of Technology-Journal of Crop Production and Processing, 8(2) (2004) 59-74, (in Persian).
[20] H. Ghayoumi Mohammadi, M. Ramesht, N. Toumanian, M. Moayeri, Space and spatial view in soil and geomorphology studies, Geography and Environmental Planning, 35(3) (2009) 1-20 (in Persian).
[21] M.-J. Ebrahimi, H. Bashari, M. Bassiri, M. Borhani, A. Mohajeri, Evaluating vegetation and soil physico-chemical characteristics changes along a grazing gradient using non-metric multi-dimensional scaling analysis (Case study: Morchehkhort rangelands-Isfahan), Rangeland, 11(1) (2017) 106-115, (in Persian).
[22] H. Aïchi, Y. Fouad, C. Walter, R.V. Rossel, Z.L. Chabaane, M. Sanaa, Regional predictions of soil organic carbon content from spectral reflectance measurements, Biosystems engineering, 104(3) (2009) 442-446.
[23] H. Bartholomeus, M.E. Schaepman, L. Kooistra, A. Stevens, W. Hoogmoed, O. Spaargaren, Spectral reflectance based indices for soil organic carbon quantification, Geoderma, 145(1-2) (2008) 28-36.
[24] O.L. Montgomery, AN INVESTIGATION OF THE RELATIONSHIP BETWEEN SPECTRAL REFLECTANCE AND THE CHEMICAL, PHYSICAL AND GENETIC CHARACTERISTICS OF SOILS, Purdue University, 1976.
[25] M.F. Baumgardner, L.F. Silva, L.L. Biehl, E.R. Stoner, Reflectance properties of soils, Advances in agronomy, 38 (1986) 1-44.
[26] S.G. Bajwa, L. Tian, D. Bullock, K. Sudduth, N. Kitchen, H. Palm, Soil characterization in agricultural fields using hyperspectral image data, in: 2001 ASAE Annual Meeting, American Society of Agricultural and Biological Engineers, 1998, pp. 1.
[27] R. Saxena, K. Vermal, R. Srivastava, A. Av, A. Shiwalkar, S. Londhel, Spectral reflectance properties of some dominant soils occurring on different altitudinal zones in Uttaranchal Himalayas, Agropedology, 13(2) (2003) 35-43.
[28] D.G. Sullivan, J. Shaw, D. Rickman, IKONOS imagery to estimate surface soil property variability in two Alabama physiographies, Soil Science Society of America Journal, 69(6) (2005) 1789-1798.
[29] G. Debaene, J. Niedzwiecki, A. Pecio, Visible and near-infrared spectrophotometer for soil analysis: preliminary results, Polish Journal of Agronomy, (03) (2010).
[30] D. Žížala, R. Minařík, T. Zádorová, Soil organic carbon mapping using multispectral remote sensing data: Prediction ability of data with different spatial and spectral resolutions, Remote Sensing, 11(24) (2019) 2947.
[31] T. Angelopoulou, N. Tziolas, A. Balafoutis, G. Zalidis, D. Bochtis, Remote sensing techniques for soil organic carbon estimation: A review, Remote Sensing, 11(6) (2019) 676.
[32] N. Pouladi, A. Gholizadeh, V. Khosravi, L. Borůvka, Digital mapping of soil organic carbon using remote sensing data: A systematic review, Catena, 232 (2023) 107409.
[33] X. Zhang, Q. Sun, J. Li, Optimal band selection for high dimensional remote sensing data using genetic algorithm, in: Second International Conference on Earth Observation for Global Changes, SPIE, 2009, pp. 522-528.
[34] F. Samadzadegan, H.S. Hasani, Determination of Optimum SVMs Based on Genetic Algorithm in Classification of Hyperspectral Imagery, Journal of Information and Communication Technology, 4(13) (2019) 9-23, (in Persian).
[35] S. Ranjbar, M. Akhoondzadeh, Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images, Journal of Geospatial Information Technology, 7(4) (2020) 215-232, (in Persian).
[36] S.A. Mohamed, M.M. Metwaly, M.R. Metwalli, M.A. AbdelRahman, N. Badreldin, Integrating Active and Passive Remote Sensing Data for Mapping Soil Salinity Using Machine Learning and Feature Selection Approaches in Arid Regions, Remote Sensing, 15(7) (2023) 1751.
[37] J. Yuan, Z. Niu, Evaluation of atmospheric correction using FLAASH, in: 2008 International Workshop on Earth Observation and Remote Sensing Applications, IEEE, 2008, pp. 1-6.
[38] T.R. Loveland, J.R. Irons, Landsat 8: The plans, the reality, and the legacy, Remote Sensing of Environment, 185 (2016 ) 1-6.