تحلیل دینامیکی دو بعدی مخازن مستطیلی تحت اثر بارگذاری هارمونیک و لرزه‌ای به روش حل اساسی با فرمول‌بندی فشار

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده مهندسی عمران و حمل و نقل، دانشگاه اصفهان.

چکیده

در این مقاله روش حل اساسی برای تحلیل دوبعدی مخازن حاوی سیال غیرلزج تراکم ناپذیر تحت تحریک زلزله توسعه داده شده است. به این منظور از معادلات فشار با رویکرد لاگرانژی استفاده شده است و لذا هندسه حل در طول زمان متغیر است. در تحقیقات پیش از این همواره از معادلات با شرایط مرزی خطی‌‌سازی شده استفاده گردیده در حالی که در این تحقیق با توجه به بیان لاگرانژی معادلات بر اساس فشار، شرایط مرزی مساله بسیار ساده بیان می‌‌شود. روش بدون‌‌شبکه حل اساسی مانند سایر روش‌‌های زیرمجموعه روش ترفتز تاکنون برای شبیه‌‌سازی تلاطم سطحی سیال تحت اثر زلزله بکار گرفته نشده‌‌ است و در این تحقیق این مهم محقق شده است. ماهیت تحریک زلزله به علت محتوی فرکانسی و تغییرات سریع منجر به تاثیر زیاد نقاط تکین گوشه‌‌های مخزن بر دقت حل می‌‌شود که در این تحقیق نشان داده شده است که روش حل اساسی به علت ماهیت تکین توابع پایه به خوبی پاسخگوی این مساله است. با توجه به هندسه متغیر دامنه حل در طول زمان از یک الگوریتم لاگرانژی برای بهنگام‌‌سازی هندسه سیال استفاده شده است. نتایج حاصل از حل عددی حاضر با نتایج عددی و آزمایشگاهی دیگر محققین مقایسه شده و نشان می‌‌دهد که روش ارائه شده به خوبی اثرات تحریک زلزله را مدل‌‌سازی می‌‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Two-dimensional dynamic analysis of rectangular tanks under the effect of harmonic and seismic loading by method of fundamental solution with pressure formulation

نویسندگان [English]

  • Mahdi Zandi
  • Javad Sarjoughian
Department of civil engineering, University of Isfahan, Isfahan, Iran.
چکیده [English]

It’s important to study the liquid motion and its effect on the tanks. The method of fundamental solution (MFS) is a novel meshless numerical method proposed to solve incompressible inviscid fluid flow problems with moving boundaries. In this paper, this method is developed for two-dimensional rectangular water reservoirs under harmonic and earthquake excitations. For modeling of fluid motion with a moving free surface, Lagrangian formulation is used to pressure equation, like a potential equation and so the geometry is updated in each time step through an implicit algorithm. In recent research, equations are used with linearized boundary conditions, while due to the Lagrangian approach of pressure-based equations; the boundary conditions of the problem are very simple and it’s easy to solve complex problems. The innovation of this study is considering earthquake loads to simulate sloshing water surfaces applied by the Method of fundamental solution (MFS). The nature of earthquake excitation due to frequency content and fast acceleration changes leads to singularity problems in tank corners. So, the solution is expressed as a linear Green basis function in the method of fundamental solutions to avoid the singularity problem and to obtain better results. The numerical results are compared with other numerical and experimental results to show the proposed procedure precisely taking into account the effects of earthquake excitation.

کلیدواژه‌ها [English]

  • Rectangular tanks
  • pressure formulation
  • method of fundamental solutions (MFS)
  • Lagrangian algorithms
  • harmonic and seismic excitations
[1] L.M. Hoskins, L.S. Jacobsen, Water pressure in a tank caused by a simulated earthquake, Bulletin of the seismological society of America, 24(1) (1934) 1-32.
[2] G.W. Housner, The dynamic behavior of water tanks, Bulletin of the seismological society of America, 53(2) (1963) 381-387.
[3] J.Y. Yang, Dynamic behavior of fluid tank systems, PhD Dissertation, Rice University, 1976.
[4] M. Kianoush, J. Chen, Effect of vertical acceleration on response of concrete rectangular liquid storage tanks, Engineering structures, 28(5) (2006) 704-715.
[5] M.A. Haroun, Vibration studies and tests of liquid storage tanks, Earthquake Engineering & Structural Dynamics, 11(2) (1983) 179-206.
[6] J.K. Kim, H.M. Koh, I.J. Kwahk, Dynamic response of rectangular flexible fluid containers, Journal of Engineering Mechanics, 122(9) (1996) 807-817.
[7] M.R.E. A.S. Ghods, Seismic Response and Free Vibration of Rectangular Liquid Storage Tanks, Modares Civil Engineering Journal, 11 (2002).
[8] Y.H. Chen, W.S. Hwang, C.H. Ko, Sloshing behaviours of rectangular and cylindrical liquid tanks subjected to harmonic and seismic excitations, Earthquake Engineering & Structural Dynamics, 36(12) (2007) 1701-1717.
[9] N. Khaji, M.H. Arab, Seismic analysis of baffled liquid storage tanks using boundary element method, Modares Civil Engineering journal, 12(2) (2012) 11-22.
[10] M.R. Shekari, On the numerical assessment of the resonant sloshing responses in 3D multi baffled partially liquid-filled steel cylindrical tanks shaken by long-period ground motions, Soil Dynamics and Earthquake Engineering,  (2019) 105712.
[11] R.L. Hardy, Multiquadric equations of topography and other irregular surfaces, Journal of geophysical research, 76(8) (1971) 1905-1915.
[12] T. Belytschko, Y.Y. Lu, L. Gu, Element‐free Galerkin methods, International journal for numerical methods in engineering, 37(2) (1994) 229-256.
[13] B. Boroomand, S. Soghrati, B. Movahedian, Exponential basis functions in solution of static and time harmonic elastic problems in a meshless style, International journal for numerical methods in engineering, 81(8) (2010) 971-1018.
[14] S. Zandi, B. Boroomand, S. Soghrati, Exponential basis functions in solution of incompressible fluid problems with moving free surfaces, Journal of Computational Physics, 231(2) (2012) 505-527.
[15] S.R. Idelsohn, E. Oñate, F.D. Pin, The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves, International journal for numerical methods in engineering, 61(7) (2004) 964-989.
[16] R. Elahi, M. Passandideh-Fard, A. Javanshir, Simulation of liquid sloshing in 2D containers using the volume of fluid method, Ocean Engineering, 96 (2015) 226-244.
[17] J.J. Monaghan, Simulating free surface flows with SPH, Journal of computational physics, 110(2) (1994) 399-406.
[18] J. Shao, H. Li, G. Liu, M. Liu, An improved SPH method for modeling liquid sloshing dynamics, Computers & Structures, 100 (2012) 18-26.
[19] S.L. Razavi Toosi, S.A. Ayyoubzadeh, A. Valizadeh, 2D Simulation of Water and Sediment Flow in Dam Break by Smoothed Particle Hydrodynamics (SPH), Modares Civil Engineering journal, 15(2) (2015) 23-34.
[20] H. Zamanipour, P. Omidvar, A. Tayebi, Investigation of convection-diffusion process in a two-phase air-water flow using Smoothed Particle Hydrodynamics, Modares Mechanical Engineering, 17(2) (2017) 115-125.
[21] N.-J. Wu, S.-C. Hsiao, H.-L. Wu, Mesh-free simulation of liquid sloshing subjected to harmonic excitations, Engineering Analysis with Boundary Elements, 64 (2016) 90-100.
[22] L. Khan Mohammadi, J. Vaseghi Amiri, B. Navayi-nia, Evaluation of Eulerian and Lagrangian Methods in the Analysis of Concrete Gravity Dam Including Dam WaterFoundation Interaction under Earthquake, Modares Civil Engineering journal, 11(4) (2011) 107-116.
[23] ALI JAMSHIDI, D., NAVAEI NIA, B., & VASEGHI AMIRI, JAVAD. (2008). HYDRODYNAMIC PRESSURE IN RESERVOIR OF CONCRETE GRAVITY DAMS UNDER EARTHQUAKE USING LAGRANGIAN AND EULERIAN METHODS. JOURNAL OF FACULTY OF ENGINEERING (UNIVERSITY OF TEHRAN), 41(6 (108)), 709-724.
[24] K.K. Mandal, D. Maity, Nonlinear finite element analysis of water in rectangular tank, Ocean Engineering, 121 (2016) 592-601.
[25] D. Young, Y. Lin, C. Fan, C. Chiu, The method of fundamental solutions for solving incompressible Navier–Stokes problems, Engineering analysis with boundary elements, 33(8-9) (2009) 1031-1044.
[26] S.M. Zandi, Nonlinear free surface flow with moving boundaries via a local meshless method using exponential basis functions, Isfahan University of Technology, (2014) (In persian).