[1] A. Ebrahimzadeh, M. Zarghami, V. Nourani, Evaluation of earth dam overtopping risk by system dynamics, Monte-Carlo simulation and Latin Hypercube Sampling methods (case study: Hajilarchay Dam, Iran), Iran-Water Resources Research, 15(1) (2019) 14-31.
[2] Ö. Kişi, River flow forecasting and estimation using different artificial neural network techniques, Hydrology research, 39(1) (2008) 27-40.
[3] K.I. Hsu, H.V. Gupta, S. Sorooshian, Artificial neural network modeling of the rainfall‐runoff process, Water resources research, 31(10) (1995) 2517-2530.
[4] C. Imrie, S. Durucan, A. Korre, River flow prediction using artificial neural networks: generalisation beyond the calibration range, Journal of hydrology, 233(1-4) (2000) 138-153.
[5] P. Fathi, Y. Mohammadi, M. Homaee, Intelligent modeling of monthly flow time series into vahdat dam in sanandaj city, Water and Soil, 23(1) (2009).
[6] O. Kisi, H. Kerem Cigizoglu, Comparison of different ANN techniques in river flow prediction, Civil Engineering and Environmental Systems, 24(3) (2007) 211-231.
[7] F. J. Chang, Y. C. Chen, A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction, Journal of hydrology, 245(1-4) (2001) 153-164.
[8] P.C. Nayak, K. Sudheer, D. Rangan, K. Ramasastri, A neuro-fuzzy computing technique for modeling hydrological time series, Journal of Hydrology, 291(1-2) (2004) 52-66.
[9] H. Sanikhani, O. Kisi, River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches, Water resources management, 26(6) (2012) 1715-1729.
[10] A. Lohani, R. Kumar, R. Singh, Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques, Journal of Hydrology, 442 (2012) 23-35.
[11] H. Emami, S. Emami, S. Heydari, Prediction Suspended Sediment Load of River Using Meta-heuristic Algorithms, Iranian Journal of Irrigation & Drainage, 13(5) (2019) 1426-1438.
[12] S. Emami, J. Parsa, Comparising performance of meta-heuristic algorithms with the sediment rate curve (case study: Zarrineh Rood River), Watershed Engineering and Management, 13(1) (2021) 43-54. (in Persian)
[13] A. Vafaeinejad, Z. Chatsimab, S. Bloori, F Mirdar Harijani, Optimization equation sediment rating curves in sediment discharge rate using particle swarm algorithm (PSO) and annealing (SA) (Case Study Bijar station), Natural Ecosystems of Iran, 8(3) (2017) 69-82.
[14] H. Hakimi Khansar, A. Shabani chafjiri, Determining Effective Features for Estimating the Volume of Water Delivered to the Irrigation and Drainage Network using Artificial Intelligence Methods (Case study: Irrigation and Drainage Network of Sefidrood Dam), Water Management in Agriculture, 8(2) (2022) 117-134. (in Persian)
[15] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems, Computers & Structures, 110-111 (2012) 151-166.
[16] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Advances in engineering software, 69 (2014) 46-61.
[17] S. Mirjalili, A. Lewis, The whale optimization algorithm, Advances in engineering software, 95 (2016) 51-67.
[18] A. Sadollah, H. Sayyaadi, A. Yadav, A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm, Applied Soft Computing, 71 (2018) 747-782.
[19] S.Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, I. Aljarah, Grasshopper optimization algorithm for multi-objective optimization problems, Applied Intelligence, 48(4) (2018) 805-820.
[20] J. S. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics, 23(3) (1993) 665-685.
[21] K. Tanaka, An introduction to fuzzy logic for practical applications, 1996.
[22] C. Ma, M. Iqbal, Statistical comparison of solar radiation correlations monthly average global and diffuse radiation on horizontal surfaces, Sol. Energy, 33 (1984) 143–148.
[23] M. Dasineh, A. Ghaderi, M. Bagherzadeh, M. Ahmadi, A. Kuriqi, Prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods, Mathematics, 9(23) (2021) 3135.
[24] C.J. Willmott, K. Matsuura, On the use of dimensioned measures of error to evaluate the performance of spatial interpolators, International Journal of Geographical Information Science, 20(1) (2006) 89-102.
[25] M.S. Lewis-Beck, Election forecasting: Principles and practice, The British Journal of Politics and International Relations, 7(2) (2005) 145-164.
[26] O. Behar, A. Khellaf, K. Mohammedi, Comparison of solar radiation models and their validation under Algerian climate – The case of direct irradiance, Energy Conversion and Management, 98 (2015) 236-251.
[27] R. Daneshfaraz, E. Aminvash, A. Ghaderi, J. Abraham, M. Bagherzadeh, SVM performance for predicting the effect of horizontal screen diameters on the hydraulic parameters of a vertical drop, Applied sciences, 11(9) (2021) 4238.
[28] M. F. Li, X. P. Tang, W. Wu, H.B. Liu, General models for estimating daily global solar radiation for different solar radiation zones in mainland China, Energy Conversion and Management, 70 (2013) 139-148.
[29] R. Stone, Improved statistical procedure for the evaluation of solar radiation estimation models, Solar energy, 51(4) (1993) 289-291.
[30] C.M. Patino, J.C. Ferreira, Confidence intervals: a useful statistical tool to estimate effect sizes in the real world, Jornal Brasileiro de Pneumologia, 41 (2015) 565-566.
[31] H. Hakimi Khansar, Simulation of behavior of the Kabudval Dam during construction with 3D numerical modeling, Amirkabir Journal of Civil Engineering, 53(9) (2021) 20-20.(in Persian)
[32] J. Parsa, H. Hakimi Khansar, A. Hoseinzadeh dalir, J. Shiri, Simulation of soil stress in earth dams using artificial intelligence models and determination of effective features, Amirkabir Journal of Civil Engineering, (2021). (in Persian)
[33] S. Maroufpoor, E. Maroufpoor, O. Bozorg-Haddad, J. Shiri, Z.M. Yaseen, Soil moisture simulation using hybrid artificial intelligent model: Hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm, Journal of Hydrology, 575 (2019) 544-556.