شناسایی انواع تصادفات آزادراهی با استفاده از مدل لوجیت آشیانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران مرکز تحقیقات ایمنی کاربردی حمل‌ونقل جاده‌ای، دانشگاه علم‌وصنعت ایران، تهران، ایران

چکیده

تصادفات جاده‌ای و عواقب ناشی از آن یکی از مهمترین مشکلاتی است که زندگی انسآن‌ها را تحت تاثیر قرار داده‌است. به منظور کاهش تلفات و هزینه‌های تصادفات، محققان ایمنی ترافیک به‌طور مستمر در حال بررسی رویکردهایی برای کاهش وقوع و پیامدهای تصادفات هستند. مدل‌سازی نوع تصادف یکی از متداول‌ترین ابزارها برای پیاده‌سازی اهداف ایمنی در تسهیلات حمل‌ونقل است. هدف از مدل‌سازی نوع تصادف، برقراری ارتباط بین فراوانی تصادفات بر اساس نوع آن و سایر متغیرهای موثر است. از جمله مزایای مدل‌های نوع تصادف آن است که با کمک این مدل ­ها می­ توان مکآن‌هایی که در آن‌ها احتمال وقوع نوع خاصی از تصادفات خطرناک وجود دارد را شناسایی نمود و تاثیر متغیرهای مختلف بر انواع مختلف تصادفات را بررسی نمود. در پژوهش پیش رو با استفاده از داده‌های تصادفات آزادراهی کشور ایران، به شناسایی نوع تصادف توسط رویکردی جدید تحت عنوان مدل لوجیت آشیانه‌ای پرداخته شده‌است. تصادفات در ابتدا به دو دسته تصادفات تک‌وسیله‌ای و چندوسیله‌ای تقسیم شدند و سپس تصادفات تک‌وسیله‌ای به سه دسته تصادفات برخورد با شیء ثابت، تصادفات خروج از جاده و تصادفات واژگونی تقسیم شدند و تصادفات چندوسیله‌ای به دو دسته تصادفات برخورد با یک وسیله نقلیه و تصادفات برخورد با چند وسیله نقلیه تقسیم شدند. هم‌چنین تاثیر متغیرهای مختلف از ویژگی‌های محیط، راه، راننده و علل تصادف با انواع مختلف تصادفات بررسی شد و به کمک اثر حاشیه‌ای تاثیر متغیرهای معنی‌دار بر هر یک از انواع تصادفات بیان شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identifying Types Of Freeway Crashes Using Nested Logit Model

نویسندگان [English]

  • Ali Tavakoli Kashani
  • Ali Rashidi
  • Saeideh Amirifar
IUST
چکیده [English]

Road crashes and their consequences are one of the most important problems that affect people's lives. In order to reduce the fatalities and related costs of crashes, traffic safety researchers are continuously investigating approaches to reduce the occurrence and consequences of crashes. Crash-type modeling is one of the most common tools for road safety goals in transportation facilities, and the purpose of crash-type modeling is to establish a relationship between the frequency of crashes based on its type and other effective variables. One of the advantages of crash-type models is that with the help of these models, it is possible to identify the places where there is a possibility of a certain type of crashes and to examine the effect of different variables on different types of crashes. In this research, using the data of freeway crashes in Iran, the type of crash was identified with a new approach called the nested logit model. To this aim, crashes were initially divided into two categories of single-vehicle and multi-vehicle crashes, and then single-vehicle crashes were divided into three categories of collision with a fixed object, run-off road crashes, and overturning crashes, and multi-vehicle crashes were divided into two categories of collision with a vehicle and multi-vehicle collision crashes. Then the effect of different variables of environment, road, driver, and causes of crashes with different types of crashes were investigated and the effect of significant variables on each type of crash was explored with marginal effect.

کلیدواژه‌ها [English]

  • Crash Type
  • Nested logit
  • Freeway Crashes
  • Traffic Safety
[2] A. Tavakoli Kashani, M.M. Besharati, An analysis of vehicle occupants’ injury severity in crashes occurred on rural freeways and multilane highways in Iran, International Journal of Transportation Engineering, 4(2) (2016) 137-146.
[3] A. Mahmud, V.V. Gayah, Estimation of crash type frequencies on individual collector roadway segments, Accident Analysis & Prevention, 161 (2021) 106345.
[4] D.-G. Kim, S. Washington, J. Oh, Modeling crash types: New insights into the effects of covariates on crashes at rural intersections, Journal of Transportation Engineering, 132(4) (2006) 282-292.
[5] S.A. Alarifi, M. Abdel-Aty, J. Lee, A Bayesian multivariate hierarchical spatial joint model for predicting crash counts by crash type at intersections and segments along corridors, Accident Analysis & Prevention, 119 (2018) 263-273.
[6] T. Jonsson, J.N. Ivan, C. Zhang, Crash prediction models for intersections on rural multilane highways: Differences by collision type, Transportation research record, 2019(1) (2007) 91-98.
[7] V. Shankar, F. Mannering, W. BARFIELD,“, Effect of Roadway Geometrics and Environmental factors on Rural Freeway Accident Frequency,  (1996) 371-389.
[8] K. Wang, J.N. Ivan, N. Ravishanker, E. Jackson, Multivariate poisson lognormal modeling of crashes by type and severity on rural two lane highways, Accident Analysis & Prevention, 99 (2017) 6-19.
[9] G.F. Ulfarsson, S. Kim, E.T. Lentz, Factors affecting common vehicle-to-vehicle collision types: Road safety priorities in an aging society, Transportation research record, 1980(1) (2006) 70-78.
[10] N. Venkataraman, G.F. Ulfarsson, V.N. Shankar, Random parameter models of interstate crash frequencies by severity, number of vehicles involved, collision and location type, Accident Analysis & Prevention, 59 (2013) 309-318.
[11] Z. Christoforou, S. Cohen, M.G. Karlaftis, Identifying crash type propensity using real-time traffic data on freeways, Journal of Safety research, 42(1) (2011) 43-50.
[12] W. Cheng, G.S. Gill, R. Dasu, M. Xie, X. Jia, J. Zhou, Comparison of Multivariate Poisson lognormal spatial and temporal crash models to identify hot spots of intersections based on crash types, Accident Analysis & Prevention, 99 (2017) 330-341.
[13] S.R. Geedipally, S. Patil, D. Lord, Examination of methods to estimate crash counts by collision type, Transportation Research Record, 2165(1) (2010) 12-20.
[14] A.-V. Jonathan, K.-F.K. Wu, E.T. Donnell, A multivariate spatial crash frequency model for identifying sites with promise based on crash types, Accident Analysis & Prevention, 87 (2016) 8-16.
[15] R. Yu, M. Abdel-Aty, Multi-level Bayesian analyses for single-and multi-vehicle freeway crashes, Accident Analysis & Prevention, 58 (2013) 97-105.
[16] S.R. Geedipally, D. Lord, Investigating the effect of modeling single-vehicle and multi-vehicle crashes separately on confidence intervals of Poisson–gamma models, Accident Analysis & Prevention, 42(4) (2010) 1273-1282.
[17] B. Dong, X. Ma, F. Chen, S. Chen, Investigating the differences of single-vehicle and multivehicle accident probability using mixed logit model, Journal of Advanced Transportation, 2018 (2018).
[18] V. Shankar, F. Mannering, W. Barfield, Effect of roadway geometrics and environmental factors on rural freeway accident frequencies, Accident Analysis & Prevention, 27(3) (1995) 371-389.
[19] A. Mensah, E. Hauer, Two problems of averaging arising in the estimation of the relationship between accidents and traffic flow, Transportation Research Record, 1635(1) (1998) 37-43.
[20] F. Chen, S. Chen, Injury severities of truck drivers in single-and multi-vehicle accidents on rural highways, Accident Analysis & Prevention, 43(5) (2011) 1677-1688.
[21] D. Lord, F. Mannering, The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives, Transportation research part A: policy and practice, 44(5) (2010) 291-305.
[22] X. Ma, S. Chen, F. Chen, Correlated random-effects bivariate poisson lognormal model to study single-vehicle and multivehicle crashes, Journal of Transportation Engineering, 142(11) (2016) 04016049.
[23] X. Meng, H. Sheng, X. Wang, Y. Lv, Predicting Crashes Based on Artificial Neural Networks and Identifying the Hazardous Crash Type at Intersections, in:  International Conference on Transportation Engineering 2007, 2007, pp. 1451-1456.
[24] D.M. Neyens, L.N. Boyle, The effect of distractions on the crash types of teenage drivers, Accident Analysis & Prevention, 39(1) (2007) 206-212.
[25] I. Alfallaj, S. Dissanayake, The Effect of Distractions on Common Crash Types of Teenage Drivers in Kansas, in:  International Conference on Transportation and Development 2018: Connected and Autonomous Vehicles and Transportation Safety, American Society of Civil Engineers Reston, VA, 2018, pp. 356-367.
[26] K. El-Basyouny, S. Barua, M.T. Islam, R. Li, Assessing the effect of weather states on crash severity and type by use of full Bayesian multivariate safety models, Transportation research record, 2432(1) (2014) 65-73.
[27] K. El-Basyouny, S. Barua, M.T. Islam, Investigation of time and weather effects on crash types using full Bayesian multivariate Poisson lognormal models, Accident Analysis & Prevention, 73 (2014) 91-99.
[28] R. Mitchell, T. Senserrick, M. Bambach, G. Mattos, Comparison of novice and full-licenced driver common crash types in New South Wales, Australia, 2001–2011, Accident Analysis & Prevention, 81 (2015) 204-210.
[29] G.I. Mothafer, T. Yamamoto, V.N. Shankar, Evaluating crash type covariances and roadway geometric marginal effects using the multivariate Poisson gamma mixture model, Analytic methods in accident research, 9 (2016) 16-26.
[30] M. Hosseinpour, S. Sahebi, Z.H. Zamzuri, A.S. Yahaya, N. Ismail, Predicting crash frequency for multi-vehicle collision types using multivariate Poisson-lognormal spatial model: A comparative analysis, Accident Analysis & Prevention, 118 (2018) 277-288.
[31] T. Bhowmik, S. Yasmin, N. Eluru, A new econometric approach for modeling several count variables: a case study of crash frequency analysis by crash type and severity, Transportation research part B: methodological, 153 (2021) 172-203.
[32] C. Zhang, J. He, C. Bai, X. Yan, C. Wang, Y. Guo, Exploring relationships between months and different crash types on mountainous freeways using a combined modeling approach, Journal of advanced transportation, 2022 (2022).
[33] N. Novat, E. Kidando, B. Kutela, A.E. Kitali, A comparative study of collision types between automated and conventional vehicles using Bayesian probabilistic inferences, Journal of safety research, 84 (2023) 251-260.
[34] J. Stiles, A. Kar, J. Lee, H.J. Miller, Lower volumes, higher speeds: Changes to crash type, timing, and severity on urban roads from COVID-19 stay-at-home policies, Transportation research record, 2677(4) (2023) 15-27.
[35] C.S. Parenteau, D.C. Viano, Size and age of fatal drivers by crash type, vehicle type and gender, Traffic injury prevention, 24(3) (2023) 203-207.
[36] V. Shankar, F. Mannering, W. Barfield, Statistical analysis of accident severity on rural freeways, Accident Analysis & Prevention, 28(3) (1996) 391-401.
[37] L.-Y. Chang, F.L. Mannering, Predicting vehicle occupancies from accident data: An accident severity approach, Transportation Research Record, 1635(1) (1998) 93-104.
[38] J. Lee, F. Mannering, Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis, Accident Analysis & Prevention, 34(2) (2002) 149-161.
[39] J.M. Holdridge, V.N. Shankar, G.F. Ulfarsson, The crash severity impacts of fixed roadside objects, Journal of Safety Research, 36(2) (2005) 139-147.
[40] M. Osman, R. Paleti, S. Mishra, M.M. Golias, Analysis of injury severity of large truck crashes in work zones, Accident Analysis & Prevention, 97 (2016) 261-273.
[41] K. Haleem, M. Abdel-Aty, Examining traffic crash injury severity at unsignalized intersections, Journal of safety research, 41(4) (2010) 347-357.
[42] W. Hu, E.T. Donnell, Median barrier crash severity: Some new insights, Accident Analysis & Prevention, 42(6) (2010) 1697-1704.
[43] Z. Wu, A. Sharma, F.L. Mannering, S. Wang, Safety impacts of signal-warning flashers and speed control at high-speed signalized intersections, Accident Analysis & Prevention, 54 (2013) 90-98.
[44] Q. Wu, G. Zhang, X. Zhu, X.C. Liu, R. Tarefder, Analysis of driver injury severity in single-vehicle crashes on rural and urban roadways, Accident Analysis & Prevention, 94 (2016) 35-45.
[45] P. Savolainen, F. Mannering, Probabilistic models of motorcyclists’ injury severities in single-and multi-vehicle crashes, Accident Analysis & Prevention, 39(5) (2007) 955-963.
[46] H. Razi-Ardakani, A. Mahmoudzadeh, M. Kermanshah, A Nested Logit analysis of the influence of distraction on types of vehicle crashes, European Transport Research Review, 10(2) (2018) 1-14.
[47] D. McFadden, Econometric models of probabilistic choice, Structural analysis of discrete data with econometric applications, 198272 (1981).
[48] P.T. Savolainen, F.L. Mannering, D. Lord, M.A. Quddus, The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives, Accident Analysis & Prevention, 43(5) (2011) 1666-1676.