مدلسازی آزمایشگاهی کابل‌‌های جدید در پل‌‌های کابلی جهت کاهش ارتعاش القایی ناشی از باد و باران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

در این مقاله دو نمونه کابل پل‌‌های ترکه‌‌ای جهت باز تولید ارتعاش القایی ناشی از باد و باران، طراحی و در تونل باد مورد آزمایش قرار گرفته است. از آنجایی که کابل‌‌ پل‌‌های کابلی، عضو سازه‌‌ای انعطاف‌‌پذیری می‌‌باشد و فرکانس طبیعی بسیار کم و میرایی ذاتی ناچیزی دارد، مستعد ارتعاش‌‌های مختلف نظیر ارتعاش ناشی از باد، ارتعاش ناشی از باد - باران و زلزله می‌‌باشد که ارتعاش القایی ناشی از باد - باران به یکی از نگرانی‌‌های بزرگ مهندسی پل تبدیل شده است. یکی از روش‌‌هایی که برای کاهش اثرات باد و باران بر روی کابل‌‌ها مورد بررسی قرار می‌‌گیرد، مشخصات آیرودینامیکی کابل می‌‌باشد و همچنین یکی از موارد تاثیرگذار بر آیرودینامیک کابل، ایجاد جریان آب باران بر روی سطح کابل است. جهت کاهش ارتعاشات القایی نیاز به استفاده از روشی می‌‌باشد که تا حد ممکن به آیرودینامیک کابل آسیب وارد نکند از اینرو در سطح کابل شیارهای مارپیچی تعبیه گردیده شده است تا این جریان آب را به پایین کابل هدایت کند. با آزمایش دو مدل کابل (بدون‌‌شیار و با شیار) در تونل باد همراه با جریان مصنوعی باران تحت اثر سرعت‌‌های مختلف باد و همچنین زوایای متفاوت کابل نسبت به صفحه عمود بر باد، این نتیجه حاصل شده است که ایجاد شیار های مارپیچ به دور کابل، جریان‌‌های فرکانس پایین را حذف می‌‌کند و بنابراین دامنه ارتعاش کاهش می‌‌یابد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation of a New Cables in Cable Stayed Bridges to Reduce Rain-Wind Induced Vibration

نویسندگان [English]

  • Hani Baghi 1
  • Ali Golsoorat Pahlaviani 1
  • Mohammad Hasan Ramesht 1
  • Jafar Asgari Marnani 1
  • Arash Mirabdolah Lavasani 2
1 Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

In this present, two pairs of cable models were designed and tested to reproduce the induced vibration of stay cables in a wind tunnel. Cable of cable-stat stayed bridges are flexible structural members that have very low natural frequency and low intrinsic attenuation, Therefore, they are able to various vibrations such as wind vibration, wind-rain-induced vibration (RWIV), and earthquakes. Wind-rain-induced vibration has become one of the major concerns of bridge engineering. One of the ways to reduce the effects of wind and rain on cable bridges has been examined is cable aerodynamic specification and also one of the factors affecting the aerodynamics of the cable is the formation of rainwater flow on the surface of the cable. Therefore, spiral grooves were installed on the surface of the cable to direct this flow of water to the bottom of the cable. By testing two cable models (without grooves and with grooves) in the wind tunnel with artificial rain flow, the effect of different wind speeds, and also different yaw angles, it was concluded that by creating spiral grooves to The cable circumference can reduce the induced vibration caused by wind and rain, and the presence of these spiral grooves around the cable eliminates low-frequency currents and thus reduces the amplitude of the induced vibration.

کلیدواژه‌ها [English]

  • Cable-stayed bridges
  • wind-induced vibration
  • experimental investigation
  • wind tunnel
  • cable
[1] E. Sanaee, G. Fadavi, Investigate How to Analyze and Design Cable bridges, Iran University of Science and Technology (in Persian),  (1996).
[2] Y. Hikami, N. Shiraishi, Rain-wind induced vibrations of cables stayed bridges, Journal of Wind Engineering and Industrial Aerodynamics, 29(1) (1988) 409-418.
[3] M. Matsumoto, Observed behavior of prototype cable vibration and its generation mechanism, Bridge Aerodynamics. Proceedings of the International Symposium on Advances in Bridge Aerodynamics, Copenhagen, Denmark, pp. 189–211 (1998).
[4] M. Matsumoto, T. Saitoh, M. Kitazawa, H. Shirato, T. Nishizaki, Response characteristics of rain-wind induced vibration of stay-cables of cable-stayed bridges, Journal of Wind Engineering and Industrial Aerodynamics, 57(2) (1995) 323-333.
[5] P. Warnitchai, Y. Fujino, B. M.Pacheco, R. Agretp, An experimental study on active tendon control of cable-stayed bridges, Earthquake Engineering and Structural Dynamics, 22, 93-111 (1993).
[6] S.H. Cheng, D.T. Lau, Modeling of cable vibration effects of cable-stayed bridges, Earthquake Engineering and Engineering Vibration, 1671-3664(01-0074-12) (2002).
[7] M. Gu, X. Du, Experimental investigation of rain–wind-induced vibration of cables in cable-stayed bridges and its mitigation, Journal of Wind Engineering and Industrial Aerodynamics, 93(1) (2005) 79-95.
[8] D. Zuo, N. Jones, Interpretation of field observations of wind- and rain-wind-induced stay cable vibrations, Journal of Wind Engineering and Industrial Aerodynamics, 98 (2010) 73-87.
[9] H. Yamaguchi, Y. Fujino, Stayed cable dynamics and its vibration control, in International Symposium on Advancesin Bridge Aerodynamics, Balkema, Rotterdam, Netherlands,, pp. 235–253 (1998).
[10] A. Pinto da Costa, J.A.C. Martins, F. Branco, J.L. Lilien, Oscillations of bridge stay cables induced by periodic motions of deck and/or towers, Journal of Engineering Mechanics, ASCE, 122(613–622) (1996).
[11] P. Warnitchai, Y. Fujino, T. Susumpow, A non-linear dynamic model for cables and its application to a cable-structure system, Journal of Sound and Vibration, 187(4) (1995) 695-712.
[12] K. Takahashi, Y. Konishi, Non-linear vibrations of cables in three dimensions, part II: Out-of-plane vibrations under in-plane sinusoidally time-varying load, Journal of Sound and Vibration, 118(1) (1987) 85-97.
[13] N. Daniotti, J.B. Jakobsen, J. Snæbjörnsson, E. Cheynet, J. Wang, Observations of bridge stay cable vibrations in dry and wet conditions: A case study, Journal of Sound and Vibration, 503 (2021) 116106.
[14] Y. Chang, L. Zhao, Y. Zou, Y. Ge, Arevised Scruton number on rain-wind-induced vibration of stay cables, Journal of Wind Engineering and Industrial Aerodynamics,  (2022).
[15] Y. Ge, Y. Chang, L. Xu, L. Zhao, Experimental investigation on spatial attitudes, dynamic characteristics and environmental conditions of rain–wind-induced vibration of stay cables with high-precision raining simulator, Journal of Fluids and Structures, 76 (2018) 60-83.
[16] H. Jing, Y. Xia, H. Li, Y. Xu, Y. Li, Excitation mechanism of rain–wind induced cable vibration in a wind tunnel, Journal of Fluids and Structures, 68, no. 32–47 (2017).
[17] FHWA, Wind-Induced Vibration of Stay Cables, Report of Federal Highway Administration, FHWA-HRT-05-083,  (2007).
[18] P.A. Irwin, Wind vibrations of cables on cable-stayed bridges. Proceedings of Structural Congress XV, Portland, OR,pp. 383–387 (1997).
[19] P.G. Specification, Recommendations for Stay Cable Design, Testing and Installation, 4th edh, Post-Tensioning Institute Committee on Cable-Stayed, Bridges,  (2001).
[20] H. Vo-Duy, C.H. Nguyen, Mitigating Large Vibrations of Stayed Cables in Wind and Rain Hazards, Shock and Vibration, (2020) 5845712.