شناخت پدیده مخرب جزایر گرمایش شهری و کاهش آن با رویکرد بررسی روسازی راه

نوع مقاله : مقاله مروری

نویسندگان

دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

توسعه محیط های شهری و افزایش بیش از حد جمعیت شهرها، باعث افزایش میزان مصرف انرژی و در نتیجه افزایش دمای محیط های شهری شده است. پدیده افزایش دمای شهرها نسبت به دمای محیط های پیرامون شهری را جزایر گرمایش شهری می نامند. اتلاف انرژی، مصرف منابع مالی، تغییرات اقلیمی و اکوسیستمی از مهمترین پیامدهای ناگوار پدیده جزایر گرمایش شهری است. در این تحقیق، عوامل ایجاد جزایر گرمایش شهری، روش های کاهش این پدیده مخرب با رویکرد استفاده از روسازی های خنک، به طور جامع مورد بررسی قرار گرفته است. تحقیقات نشان داده است که جزایر گرمایش شهری با استفاده از روش‌های ثابت، پیمایشی و از راه دور قابل ارزیابی است. یکی از موثرترین اقدامات در راستای کاهش پدیده مخرب جزایر شهری، استفاده از مواد بازتابنده و کاربرد روسازی های خنک در جاده‌ها در راستای کاهش دمای شهرها و کاهش تاثیرات پدیده مخرب جزایرگرمایش شهری است. نتایج نشان داده است که با استفاده از روسازی های خنک، دمای محیط تا 2 درجه سانتی گراد و دمای سطح رویه روسازی تا 1۳ درجه سانتی گراد، کاهش یافته است. کاربرد سیمان و سنگدانه با رنگ روشن و افزودنی‌هایی مانند تیتانیوم دی اکسید، اکسید روی، اکسید آلومینیوم و خاکستر کوره، در کاهش این پدیده، موثر بوده است. با افزایش نفوذ پذیری رویه راه، افزایش ضریب انعکاس سطح، افزایش ضریب حرارتی و کاهش ضخامت روسازی میتوان دمای سطح روسازی را کاهش داد و مانع ایجاد پدیده نامطلوب جزایر گرمایش شهری شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Urban Heat Island Destructive Phenomenon and Its Reduction with the Approach of Road Pavement Evaluation

نویسندگان [English]

  • Armin Tofighi
  • Rashid Tanzadeh
  • Fereidoon Moghadas Nejad
Faculty of Civil and Environmental Engineering, Amirkabir university of Technology, Tehran, Iran
چکیده [English]

The development of urban environments and the excessive increase of urban population have increased the amount of energy consumption and as a result, the temperature of urban environments has increased. The phenomenon of increasing the temperature of cities compared to the temperature of suburbs is called the urban heat island (UHI). Energy waste, financial resource consumption, climate, and ecosystem change are the most important adverse consequences of the phenomenon of UHI. In this research, the causes of UHI, and methods to reduce this destructive phenomenon with the approach of using cool pavements, have been comprehensively studied. Research has shown that UHI can be evaluated using fixed, survey, and remote methods. One of the most effective actions is the use of reflective materials and the use of cool pavements on the roads to reduce the temperature of cities and reduce the effects of the destructive phenomenon of UHI. Results show that with the use of cool pavements, the ambient temperature and the surface temperature of the pavement surface can be reduced up to 2 ° C and 13 ° C respectively improved. The use of light-colored cement and aggregates and additives such as titanium dioxide, zinc oxide, aluminum oxide, and fly ash has been effective in reducing this phenomenon. By increasing road surface permeability, increasing the surface reflection coefficient, increasing the thermal coefficient, and decreasing the pavement thickness, the pavement surface temperature can be reduced, and the undesirable phenomenon of UHI can be prevented.

کلیدواژه‌ها [English]

  • Urban heat island
  • ambient temperature
  • cool pavement
  • reflective materials
  • energy consumption
[1] D.W. Jones, How urbanization affects energy-use in developing countries, Energy policy, 19(7) (1991) 621-630.
[2] C.I. Portela, K.G. Massi, T. Rodrigues, E. Alcântara, Impact of urban and industrial features on land surface temperature: Evidences from satellite thermal indices, Sustainable Cities and Society, 56 (2020) 102100.
[3] X.-L. Chen, H.-M. Zhao, P.-X. Li, Z.-Y. Yin, Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes, Remote sensing of environment, 104(2) (2006) 133-146.
[4] M.P. McCarthy, M.J. Best, R.A. Betts, Climate change in cities due to global warming and urban effects, Geophysical research letters, 37(9) (2010).
[5] S. Grimmond, Urbanization and global environmental change: local effects of urban warming, The Geographical Journal, 173(1) (2007) 83-88.
[6] D.J. Sailor, N. Dietsch, The urban heat island mitigation impact screening tool (MIST), Environmental Modelling & Software, 22(10) (2007) 1529-1541.
[7] Y. Qin, A review on the development of cool pavements to mitigate urban heat island effect, Renewable and sustainable energy reviews, 52 (2015) 445-459.
[8] J. Voogt, How researchers measure urban heat islands, in:  United States Environmental Protection Agency (EPA), State and Local Climate and Energy Program, Heat Island Effect, Urban Heat Island Webcasts and Conference Calls, 2007.
[9] C.M. Nwakaire, C.C. Onn, S.P. Yap, C.W. Yuen, P.D. Onodagu, Urban Heat Island Studies with emphasis on urban pavements: A review, Sustainable Cities and Society, 63 (2020) 102476.
[10] M. Davies, P. Steadman, T. Oreszczyn, Strategies for the modification of the urban climate and the consequent impact on building energy use, Energy Policy, 36(12) (2008) 4548-4551.
[11] V. Machairas, A. Tsangrassoulis, K. Axarli, Algorithms for optimization of building design: A review, Renewable and sustainable energy reviews, 31 (2014) 101-112.
[12] M. Santamouris, C. Cartalis, A. Synnefa, D. Kolokotsa, On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review, Energy and buildings, 98 (2015) 119-124.
[13] M. Santamouris, A. Synnefa, T. Karlessi, Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions, Solar energy, 85(12) (2011) 3085-3102.
[14] H. Chen, R. Ooka, H. Huang, T. Tsuchiya, Study on mitigation measures for outdoor thermal environment on present urban blocks in Tokyo using coupled simulation, Building and Environment, 44(11) (2009) 2290-2299.
[15] C. Smith, G. Levermore, Designing urban spaces and buildings to improve sustainability and quality of life in a warmer world, Energy policy, 36(12) (2008) 4558-4562.
[16] C. Heaviside, H. Macintyre, S. Vardoulakis, The urban heat island: implications for health in a changing environment, Current environmental health reports, 4 (2017) 296-305.
[17] S. Hajat, R.S. Kovats, K. Lachowycz, Heat-related and cold-related deaths in England and Wales: who is at risk?, Occupational and environmental medicine, 64(2) (2007) 93-100.
[18] S. Hajat, B. Armstrong, M. Baccini, A. Biggeri, L. Bisanti, A. Russo, A. Paldy, B. Menne, T. Kosatsky, Impact of high temperatures on mortality: is there an added heat wave effect?, Epidemiology,  (2006) 632-638.
[19] M.S. O'Neill, K.L. Ebi, Temperature extremes and health: impacts of climate variability and change in the United States, Journal of Occupational and Environmental Medicine,  (2009) 13-25.
[20] K.A. Borden, S.L. Cutter, Spatial patterns of natural hazards mortality in the United States, International journal of health geographics, 7 (2008) 1-13.
[21] H. Taha, Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat, Energy and buildings, 25(2) (1997) 99-103.
[22] C. Sarrat, A. Lemonsu, V. Masson, D. Guédalia, Impact of urban heat island on regional atmospheric pollution, Atmospheric environment, 40(10) (2006) 1743-1758.
[23] P. Rajagopalan, K.C. Lim, E. Jamei, Urban heat island and wind flow characteristics of a tropical city, Solar Energy, 107 (2014) 159-170.
[24] R. Giridharan, S. Ganesan, S. Lau, Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong, Energy and buildings, 36(6) (2004) 525-534.
[25] J. Unger, Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database, International Journal of Environment and Pollution, 36(1-3) (2009) 59-80.
[26] C. Yuan, L. Chen, Mitigating urban heat island effects in high-density cities based on sky view factor and urban morphological understanding: a study of Hong Kong, Architectural Science Review, 54(4) (2011) 305-315.
[27] E. Alexandri, P. Jones, Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates, Building and environment, 43(4) (2008) 480-493.
[28] K.W. Oleson, G.B. Bonan, J. Feddema, Effects of white roofs on urban temperature in a global climate model, Geophysical Research Letters, 37(3) (2010).
[29] P. Shahmohamadi, A. Che-Ani, A. Ramly, K. Maulud, M. Mohd-Nor, Reducing urban heat island effects: A systematic review to achieve energy consumption balance, International Journal of Physical Sciences, 5(6) (2010) 626-636.
[30] B. Ferguson, K. Fisher, J. Golden, L. Hair, L. Haselbach, D. Hitchcock, K. Kaloush, M. Pomerantz, N. Tran, D. Waye, Reducing urban heat islands: compendium of strategies-cool pavements,  (2008).
[31] M. Santamouris, Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments, Renewable and Sustainable Energy Reviews, 26 (2013) 224-240.
[32] H. Li, J.T. Harvey, T. Holland, M. Kayhanian, The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management, Environmental Research Letters, 8(1) (2013) 015023.
[33] S. Sen, J. Roesler, B. Ruddell, A. Middel, Cool pavement strategies for urban heat island mitigation in suburban Phoenix, Arizona, Sustainability, 11(16) (2019) 4452.
[34] A. Mohajerani, J. Bakaric, T. Jeffrey-Bailey, The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete, Journal of environmental management, 197 (2017) 522-538.
[35] H. Akbari, M. Pomerantz, H. Taha, Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas, Solar energy, 70(3) (2001) 295-310.
[36] F. Rossi, A.L. Pisello, A. Nicolini, M. Filipponi, M. Palombo, Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model, Applied energy, 114 (2014) 621-631.
[37] K. Deilami, M. Kamruzzaman, J.F. Hayes, Correlation or causality between land cover patterns and the urban heat island effect? Evidence from Brisbane, Australia, Remote Sensing, 8(9) (2016) 716.
[38] M. Hulley, The urban heat island effect: Causes and potential solutions, in:  Metropolitan sustainability, Elsevier, 2012, pp. 79-98.
[39] D.R. Streutker, A remote sensing study of the urban heat island of Houston, Texas, International Journal of Remote Sensing, 23(13) (2002) 2595-2608.
[40] H. Akbari, L.S. Rose, Urban surfaces and heat island mitigation potentials, Journal of the Human-environment System, 11(2) (2008) 85-101.
[41] B. Guan, B. Ma, F. Qin, Application of asphalt pavement with phase change materials to mitigate urban heat island effect, in:  2011 International Symposium on Water Resource and Environmental Protection, IEEE, 2011, pp. 2389-2392.
[42] H. Takebayashi, M. Moriyama, Study on surface heat budget of various pavements for urban heat island mitigation, Advances in Materials Science and Engineering, 2012 (2012).
[43] R. Okwen, R. Pu, J. Cunningham, Remote sensing of temperature variations around major power plants as point sources of heat, International journal of remote sensing, 32(13) (2011) 3791-3805.
[44] R. Priyadarsini, W.N. Hien, C.K.W. David, Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island, Solar energy, 82(8) (2008) 727-745.
[45] S. Taslim, D.M. Parapari, A. Shafaghat, Urban design guidelines to mitigate urban heat island (UHI) effects in hot-dry cities, Jurnal teknologi, 74(4) (2015) 119-124.
[46] A. Soltani, E. Sharifi, Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide, Frontiers of Architectural Research, 6(4) (2017) 529-538.
[47] M. Nuruzzaman, Urban heat island: causes, effects and mitigation measures-a review, International Journal of Environmental Monitoring and Analysis, 3(2) (2015) 67-73.
[48] T.R. Oke, The heat island of the urban boundary layer: characteristics, causes and effects, Wind climate in cities,  (1995) 81-107.
[49] P.D. Howe, J.R. Marlon, X. Wang, A. Leiserowitz, Public perceptions of the health risks of extreme heat across US states, counties, and neighborhoods, Proceedings of the National Academy of Sciences, 116(14) (2019) 6743-6748.
[50] H. Akbari, D. Kolokotsa, Three decades of urban heat islands and mitigation technologies research, Energy and buildings, 133 (2016) 834-842.
[51] T. Susca, F. Pomponi, Heat island effects in urban life cycle assessment: Novel insights to include the effects of the urban heat island and UHI‐mitigation measures in LCA for effective policy making, Journal of Industrial Ecology, 24(2) (2020) 410-423.
[52] Y. Sun, G. Augenbroe, Urban heat island effect on energy application studies of office buildings, Energy and Buildings, 77 (2014) 171-179.
[53] R. Tanzadeh, G. Shafabakhsh, Surface free energy and adhesion energy evaluation of modified bitumen with recycled carbon black (micro-nano) from gases and petrochemical waste, Construction and Building Materials, 245 (2020) 118361.
[54] L. Tian, Y. Li, J. Lu, J. Wang, Review on urban heat island in China: Methods, its impact on buildings energy demand and mitigation strategies, Sustainability, 13(2) (2021) 762.
[55] M. Zinzi, E. Carnielo, Impact of urban temperatures on energy performance and thermal comfort in residential buildings. The case of Rome, Italy, Energy and Buildings, 157 (2017) 20-29.
[56] B. Feizizadeh, T. Blaschke, Examining urban heat island relations to land use and air pollution: Multiple endmember spectral mixture analysis for thermal remote sensing, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3) (2013) 1749-1756.
[57] M. Agarwal, A. Tandon, Modeling of the urban heat island in the form of mesoscale wind and of its effect on air pollution dispersal, Applied mathematical modelling, 34(9) (2010) 2520-2530.
[58] L. Zhou, R.E. Dickinson, Y. Tian, J. Fang, Q. Li, R.K. Kaufmann, C.J. Tucker, R.B. Myneni, Evidence for a significant urbanization effect on climate in China, Proceedings of the National Academy of Sciences, 101(26) (2004) 9540-9544.
[59] Y. Hirano, T. Fujita, Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo, Energy, 37(1) (2012) 371-383.
[60] T. Ojima, Changing Tokyo metropolitan area and its heat island model, Energy and Buildings, 15(1-2) (1990) 191-203.
[61] T. Ichinose, F. Matsumoto, K. Kataoka, Counteracting urban heat islands in Japan, in:  Urban Energy Transition, Elsevier, 2008, pp. 365-380.
[62] M. Morabito, A. Crisci, G. Guerri, A. Messeri, L. Congedo, M. Munafò, Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences, Science of the Total Environment, 751 (2021) 142334.
[63] M. Farbudi, Z. Zamani, Studying the solutions of urban heat island mitigation through greenery and permeable surface in Tehran, Journal of Environmental Science and Technology, 24(2) (2022) 31-45.
[64] G.-J. Steeneveld, S. Koopmans, B. Heusinkveld, L. Van Hove, A. Holtslag, Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands, Journal of Geophysical Research: Atmospheres, 116(D20) (2011).
[65] Y. Sakakibara, K. Owa, Urban–rural temperature differences in coastal cities: Influence of rural sites, International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(6) (2005) 811-820.
[66] M. Pichierri, S. Bonafoni, R. Biondi, Satellite air temperature estimation for monitoring the canopy layer heat island of Milan, Remote Sensing of Environment, 127 (2012) 130-138.
[67] H. Widyasamratri, K. Souma, T. Suetsugi, H. Ishidaira, Y. Ichikawa, H. Kobayashi, I. Inagaki, Air temperature estimation from satellite remote sensing to detect the effect of urbanization in Jakarta, Indonesia, Journal of Emerging Trends in Engineering and Applied Sciences, 4(6) (2013) 800-805.
[68] E. Cedillo-González, M. Governatori, C. Ferrari, C. Siligardi, Solar reflective ink-jet printed porcelain stoneware tiles as an alternative for Urban Heat Island mitigation, Journal of the European Ceramic Society, 42(2) (2022) 707-715.
[69] S. Zhu, X. Mai, A review of using reflective pavement materials as mitigation tactics to counter the effects of urban heat island, Advanced Composites and Hybrid Materials, 2 (2019) 381-388.
[70] D. Aelenei, L. Aelenei, R. Loonen, M. Perino, V. Serra, Adaptive facades, in:  Handbook of Energy Efficiency in buildings, Elsevier, 2019, pp. 384-411.
[71] G. Wypych, Handbook of material weathering, Elsevier, 2018.
[72] A. Muscio, The solar reflectance index as a tool to forecast the heat released to the urban environment: Potentiality and assessment issues, Climate, 6(1) (2018) 12.
[73] N. Tran, B. Powell, H. Marks, R. West, A. Kvasnak, Strategies for design and construction of high-reflectance asphalt pavements, Transportation Research Record, 2098(1) (2009) 124-130.
[74] A. Standard, Standard practice for calculating solar reflectance index of horizontal and lowsloped opaque surfaces, ASTM International, West Conshohocken, PA,  (2001).
[75] L. Haselbach, M. Boyer, J.T. Kevern, V.R. Schaefer, Cyclic heat island impacts on traditional versus pervious concrete pavement systems, Transportation research record, 2240(1) (2011) 107-115.
[76] L. Haselbach, Engineering Guide to LEED-New Construction: Sustainable Construction for Engineers, McGraw-Hill Education, 2008.
[77] A. Ferrari, A. Kubilay, D. Derome, J. Carmeliet, The use of permeable and reflective pavements as a potential strategy for urban heat island mitigation, Urban Climate, 31 (2020) 100534.
[78] N. Anting, M.F.M. Din, K. Iwao, M. Ponraj, K. Jungan, L.Y. Yong, A.J.L.M. Siang, Experimental evaluation of thermal performance of cool pavement material using waste tiles in tropical climate, Energy and Buildings, 142 (2017) 211-219.
[79] S.R.O. Aletba, N.A. Hassan, R.P. Jaya, E. Aminudin, M.Z.H. Mahmud, A. Mohamed, A.A. Hussein, Thermal performance of cooling strategies for asphalt pavement: a state-of-the-art review, Journal of Traffic and Transportation Engineering (English Edition), 8(3) (2021) 356-373.
[80] E. Wong, US Environmental Protection Agency’s Office of Atmospheric Programs, Reducing Urban Heat Island: Compendium of Strategies, in, EPA.
[81] A. Kavussi, R. Tanzadeh, Application of slow curing bitumen as a rejuvenating agent in aged bituminous mixes, Advanced Materials Research, 587 (2012) 62-66.
[82] V. Di Maria, M. Rahman, P. Collins, G. Dondi, C. Sangiorgi, Urban Heat Island Effect: thermal response from different types of exposed paved surfaces, International Journal of Pavement Research & Technology, 6(4) (2013).
[83] L. Doulos, M. Santamouris, I. Livada, Passive cooling of outdoor urban spaces. The role of materials, Solar energy, 77(2) (2004) 231-249.
[84] A. Synnefa, T. Karlessi, N. Gaitani, M. Santamouris, D. Assimakopoulos, C. Papakatsikas, On the optical and thermal performance of cool colored thin layer asphalt used to improve urban microclimate and reduce the energy consumption of buildings, Building and Environment, 46(1) (2011) 38-44.
[85] J.S. Golden, K.E. Kaloush, Mesoscale and microscale evaluation of surface pavement impacts on the urban heat island effects, The international journal of pavement engineering, 7(1) (2006) 37-52.
[86] D. Wijeyesekera, N.A. Mohamad Nazari, S. Lim, M. Masirin, A. Zainorabidin, J. Walsh, Investigation into the urban heat island effects from asphalt pavements, OIDA International Journal of Sustainable Development, 5(6) (2012) 97-118.
[87] A. Rosheidat, H. Bryan, Optimizing the effect of vegetation for pedestrian thermal comfort and urban heat island mitigation in a hot arid urban environment, Proceedings of SimBuild, 4(1) (2010) 230-237.
[88] H. Li, J. Harvey, D. Jones, Cooling effect of permeable asphalt pavement under dry and wet conditions, Transportation research record, 2372(1) (2013) 97-107.
[89] M.F. Shahidan, P.J. Jones, J. Gwilliam, E. Salleh, An evaluation of outdoor and building environment cooling achieved through combination modification of trees with ground materials, Building and Environment, 58 (2012) 245-257.
[90] N.H. Wong, S.K. Jusuf, A.A. La Win, H.K. Thu, T.S. Negara, W. Xuchao, Environmental study of the impact of greenery in an institutional campus in the tropics, Building and environment, 42(8) (2007) 2949-2970.
[91] V.S. Cheela, M. John, W. Biswas, P. Sarker, Combating urban heat island effect—A review of reflective pavements and tree shading strategies, Buildings, 11(3) (2021) 93.
[92] H. Akbari, H.D. Matthews, Global cooling updates: Reflective roofs and pavements, Energy and Buildings, 55 (2012) 2-6.
[93] Y. Qin, Urban canyon albedo and its implication on the use of reflective cool pavements, Energy and Buildings, 96 (2015) 86-94.
[94] Y. Qin, J.E. Hiller, Understanding pavement-surface energy balance and its implications on cool pavement development, Energy and Buildings, 85 (2014) 389-399.
[95] H.E. Gilbert, P.J. Rosado, G. Ban-Weiss, J.T. Harvey, H. Li, B.H. Mandel, D. Millstein, A. Mohegh, A. Saboori, R.M. Levinson, Energy and environmental consequences of a cool pavement campaign, Energy and buildings, 157 (2017) 53-77.
[96] H. Taha, Meso-urban meteorological and photochemical modeling of heat island mitigation, Atmospheric Environment, 42(38) (2008) 8795-8809.
[97] A. Mohegh, P. Rosado, L. Jin, D. Millstein, R. Levinson, G. Ban‐Weiss, Modeling the climate impacts of deploying solar reflective cool pavements in California cities, Journal of Geophysical Research: Atmospheres, 122(13) (2017) 6798-6817.
[98] A.H. Rosenfeld, H. Akbari, J.J. Romm, M. Pomerantz, Cool communities: strategies for heat island mitigation and smog reduction, Energy and buildings, 28(1) (1998) 51-62.
[99] S.E. Bretz, H. Akbari, Long-term performance of high-albedo roof coatings, Energy and buildings, 25(2) (1997) 159-167.
[100] P. Rosado, H. Gilbert, M. Pomerantz, B. Mandel, R. Levinson, Cool pavement demonstration and study, in:  Third International Conference on Countermeasures to Urban Heat Island, 2014, pp. 815-826.
[101] H. Li, A. Saboori, X. Cao, Information synthesis and preliminary case study for life cycle assessment of reflective coatings for cool pavements, International Journal of Transportation Science and Technology, 5(1) (2016) 38-46.
[102] J. Chen, H. Wang, H. Zhu, Analytical approach for evaluating temperature field of thermal modified asphalt pavement and urban heat island effect, Applied Thermal Engineering, 113 (2017) 739-748.
[103] R.B. Mallick, B.-L. Chen, S. Bhowmick, M. Hulen, Capturing solar energy from asphalt pavements, in:  International symposium on asphalt pavements and environment, international society for asphalt pavements, Zurich, Switzerland, 2008, pp. 161-172.
[104] Z. Zhou, S. Hu, X. Zhang, J. Zuo, Characteristics and application of road absorbing solar energy, Frontiers in Energy, 7 (2013) 525-534.
[105] M.R. Hall, P.K. Dehdezi, A.R. Dawson, J. Grenfell, R. Isola, Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions, Journal of materials in civil engineering, 24(1) (2012) 32-47.
[106] A.S. Dezfooli, F.M. Nejad, H. Zakeri, S. Kazemifard, Solar pavement: A new emerging technology, Solar Energy, 149 (2017) 272-284.
[107] A. Middel, V.K. Turner, F.A. Schneider, Y. Zhang, M. Stiller, Solar reflective pavements—A policy panacea to heat mitigation?, Environmental Research Letters, 15(6) (2020) 064016.
[108] M. Pomerantz, Durability and visibility benefits of cooler reflective pavements,  (2000).
[109] M. Hendel, Cool pavements, in:  Eco-efficient pavement construction materials, Elsevier, 2020, pp. 97-125.
[110] J. Tanzadeh, R. Tanzadeh, H. Nazari, N. Kamvar, Fatigue evaluation of hot mix asphalt (HMA) mixtures modified by optimum percent of TiO2 nanoparticles, in:  Advanced Engineering Forum, Trans Tech Publ, 2017, pp. 55-62.
[111] D. Senevirathne, V. Jayasooriya, S.M. Dassanayake, S. Muthukumaran, Effects of pavement texture and colour on Urban Heat Islands: An experimental study in tropical climate, Urban Climate, 40 (2021) 101024.
[112] G. Kyriakodis, M. Santamouris, Using reflective pavements to mitigate urban heat island in warm climates-Results from a large scale urban mitigation project, Urban Climate, 24 (2018) 326-339.
[113] H. Taha, D.J. Sailor, H. Akbari, High-albedo materials for reducing building cooling energy use,  (1992).
[114] R. Levinson, H. Akbari, P. Berdahl, K. Wood, W. Skilton, J. Petersheim, A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products, Solar Energy Materials and Solar Cells, 94(6) (2010) 946-954.
[115] M. Fossum, E.O. Ryeng, The walking speed of pedestrians on various pavement surface conditions during winter, Transportation research part D: transport and environment, 97 (2021) 102934.
[116] R. Tanzadeh, G. Shafabakhsh, Relationship between the surface free energy and stiffness modulus of bitumen modified with micro-nano-carbon black from end-of-life tires, International Journal of Adhesion and Adhesives, 100 (2020) 102606.
[117] S. Sen, J. Roesler, Heat Island Impact of Chip Seals, in:  Airfield and Highway Pavements 2021, 2021, pp. 320-331.
[118] M. Pomerantz, H. Akbari, S.-C. Chang, R. Levinson, B. Pon, Examples of cooler reflective streets for urban heat-island mitigation: Portland cement concrete and chip seals,  (2003).
[119] M. Pomerantz, The effect of pavements' temperatures on air temperatures in large cities,  (2000).
[120] M. Pomerantz, H. Akbari, J.T. Harvey, Cooler reflective pavements give benefits beyond energy savings: Durability and illumination,  (2000).
[121] N. Xie, H. Li, A. Abdelhady, J. Harvey, Laboratorial investigation on optical and thermal properties of cool pavement nano-coatings for urban heat island mitigation, Building and Environment, 147 (2019) 231-240.
[122] R. Levinson, H. Akbari, Effects of composition and exposure on the solar reflectance of portland cement concrete, Cement and concrete research, 32(11) (2002) 1679-1698.
[123] T. Cackler, J. Alleman, J. Kevern, J. Sikkema, Technology demonstrations project: environmental impact benefits with “TX active” concrete pavement in Missouri DOT two-lift highway construction demonstration, Final Report I, Iowa State University,  (2012).
[124] A. Baral, S. Sen, J.R. Roesler, Use phase assessment of photocatalytic cool pavements, Journal of Cleaner Production, 190 (2018) 722-728.
[125] K. Boriboonsomsin, F. Reza, Mix design and benefit evaluation of high solar reflectance concrete for pavements, Transportation Research Record, 2011(1) (2007) 11-20.