عملیاتی‌سازی تاب‌آوری اجتماعی برای سامانه‌های مدیریت ریسک سیلاب رودخانه‌ای در حوضه آبریز شهری

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر (پلی‌‌تکنیک تهران)، تهران، ایران

چکیده

دیدگاه رایج در مدیریت سیلاب حوضه آبریز رودخانه‌ای (RBFM) بر افزایش امنیت سامانه‌های زهکشی در مواجهه با بارندگی‌های شدید تأکید دارد. وقوع سیل‌های اخیر در حوضه‌های آبریز شهری، توجه به رویکردی تاب‌آور که علاوه بر سطح ایمنی، به پیامدهای سیلاب نیز نظر دارد را ضروری می‌سازد. تاب‌آوری را می‌توان توانایی یک سامانه RBFM برای مقاومت در برابر بارش‌های مختلف، کاهش آسیب‌های ناشی از سیل و بازگشت به حالت عادی تعریف کرد. مطالعه حاضر، با هدف بهبود سامانه زهکشی شهر گنبدکاووس، چارچوبی سلسه مراتبی برای انتخاب گزینه‌های مدیریت سیلاب بر اساس شاخص‌های تاب‌آوری اجتماعی پیشنهاد می‌کند. در این مطالعه، با تمرکز بر جنبه‌های اجتماعی، تاب‌آوری به عنوان رفتار سامانه از منظر پاسخ و بازیابی در اثر رخدادهای مختلف بارندگی درنظر گرفته شده است. برای همین منظور، شاخص‌های پاسخ اجتماعی، توانایی بازیابی اجتماعی، نقطه مقاومت و نقطه هشدار برای عملیاتی کردن چارچوب پیشنهادی تعریف شده است. برای لحاظ کردن عدم‌قطعیت پارامترهای آسیب‌پذیری و جلوگیری از ناسازگاری ابعادی، سیستم به صورت فازی سلسله مراتبی توسعه یافت. استفاده از این رویکرد در حوضه آبریز رودخانه گرگانرود برای ارزیابی اثربخشی گزینه‌های مدیریت سیلاب از منظر تاب‌آوری نشان داد با لحاظ کردن شاخص‌های تاب‌آوری اجتماعی، گزینه‌های مؤثرتری نسبت به تصمیم‌گیری‌های سنتی قابل انتخاب است. مقایسه منحنی‌های پاسخ-بازیابی برای گزینه‌های مختلف مدیریتی نشان داد تعریف شاخص‌های مختلف تاب‌آوری به‌منظور تعیین رفتار سامانه RBFM پس از شکست عملکرد اهمیت زیادی دارد. نتایج این مطالعه نشان داد می‌توان از شاخص‌های ارائه ‌شده به‌عنوان معیارهای انتخاب گزینه‌های متنوع مدیریتی بر اساس رفتار سامانه RBFM تحت رخدادهای بارندگی مختلف استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Operationalizing Social Resilience for Riverine Flood Risk Management in Urban Basins

نویسندگان [English]

  • Ali Kiaei
  • Mehdi Ahmadi
Department of Civil and Environmental Engineering, Amirkabir University of Technology
چکیده [English]

The conventional approach to River Basin Flood Management (RBFM) primarily focuses on enhancing the structural integrity of drainage systems to mitigate the impacts of heavy rainfall events. However, recent floods in urban catchments have revealed the necessity for a more resilient approach that incorporates the consequences of flooding. Resilience in the context of RBFM refers to the system's ability to endure diverse precipitation events, minimize flood damage, and restore normal conditions. This research presents a framework for selecting flood management options within a hierarchical system, with a specific emphasis on social resilience indicators. The study defines resilience by examining the response and recovery behaviors of RBFM systems during varying rainfall events. To implement the framework, a set of indicators related to social response, social recovery capacity, resistance points, and warning points has been established. A hierarchical fuzzy system has been developed to quantify these indicators, accounting for uncertainties in social variables and addressing dimensional inconsistencies. Application of this approach in the Gorganrood River basin demonstrates the efficacy of selected flood risk management options in terms of resilience, as compared to conventional decision-making methods. Analyzing the response-recovery curves for different management options underscores the importance of delineating distinct resilience indicators to evaluate the behavior of RBFM systems following performance failures. The findings of this study suggest that the proposed indicators can serve as decision-making criteria for selecting management options based on the behavior of the river basin system under rainfall events with varying return periods.

کلیدواژه‌ها [English]

  • River basin flood management
  • resilience
  • social resilience indicators
  • hierarchical fuzzy system
  • flood risk management
[1] H. Jia, Y. Lu, L.Y. Shaw, Y. Chen, Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village, Separation and Purification Technology, 84 (2012) 112-119.
[2] C. Pyke, M.P. Warren, T. Johnson, J. LaGro Jr, J. Scharfenberg, P. Groth, R. Freed, W. Schroeer, E. Main, Assessment of low impact development for managing stormwater with changing precipitation due to climate change, Landscape and Urban Planning, 103(2) (2011) 166-173.
[3] Q. Zhou, P.S. Mikkelsen, K. Halsnæs, K. Arnbjerg-Nielsen, Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits, Journal of Hydrology, 414 (2012) 539-549.
[4] C. Li, X. Cheng, N. Li, X. Du, Q. Yu, G. Kan, A framework for flood risk analysis and benefit assessment of flood control measures in urban areas, International journal of environmental research and public health, 13(8) (2016) 787-802.
[5] Y. Tahmasebi Birgani, F. Yazdandoost, An integrated framework to evaluate resilient-sustainable urban drainage management plans using a combined-adaptive MCDM technique, Water Resources Management, 32(8) (2018) 2817-2835.
[6] P. Willems, K. Arnbjerg-Nielsen, J. Olsson, V. Nguyen, Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings, Atmospheric research, 103 (2012) 106-118.
[7] T. Siekmann, M. Siekmann, Resilient urban drainage–Options of an optimized area-management, Urban Water Journal, 12(1) (2015) 44-51.
[8] Y.T. Birgani, F. Yazdandoost, A framework for evaluating the persistence of urban drainage risk management systems, Journal of Hydro-environment Research, 8(4) (2014) 330-342.
[9] M.J. Hammond, A.S. Chen, S. Djordjević, D. Butler, O. Mark, Urban flood impact assessment: A state-of-the-art review, Urban Water Journal, 12(1) (2015) 14-29.
[10] Y.T. Birgani, F. Yazdandoost, Resilience in urban drainage risk management systems, in: proceedings of the institution of civil engineers-water management, Thomas Telford Ltd, 2016, pp. 3-16.
[11] Y.T. Birgani, F. Yazdandoost, Sustainable urban drainage management based on resilience risk management, Ph.D Dissertation, 2016 (in Persian).
[12] F. Yazdandoost, B. Bozorgy, Flood risk management strategies using multi-criteria analysis, in: Proceedings of the Institution of Civil Engineers-Water Management, Thomas Telford Ltd, 2008, pp. 261-266.
[13] K.-H. Liao, A theory on urban resilience to floods—a basis for alternative planning practices, Ecology and society, 17(4) (2012).
[14] S. Djordjević, D. Butler, P. Gourbesville, O. Mark, E. Pasche, New policies to deal with climate change and other drivers impacting on resilience to flooding in urban areas: the CORFU approach, Environmental Science & Policy, 14(7) (2011) 864-873.
[15] Y. Cai, G. Huang, Q. Tan, B. Chen, Identification of optimal strategies for improving eco-resilience to floods in ecologically vulnerable regions of a wetland, Ecological Modelling, 222(2) (2011) 360-369.
[16] P.M. Orencio, M. Fujii, A localized disaster-resilience index to assess coastal communities based on an analytic hierarchy process (AHP), International Journal of Disaster Risk Reduction, 3 (2013) 62-75.
[17] T. McDaniels, S. Chang, D. Cole, J. Mikawoz, H. Longstaff, Fostering resilience to extreme events within infrastructure systems: Characterizing decision contexts for mitigation and adaptation, Global Environmental Change, 18(2) (2008) 310-318.
[18] C.S. Holling, G.K. Meffe, Command and control and the pathology of natural resource management, Conservation biology, 10(2) (1996) 328-337.
[19] D. Tilman, J.A. Downing, Biodiversity and stability in grasslands, Nature, 367(6461) (1994) 363-365.
[20] K. de Bruijn, J. Buurman, M. Mens, R. Dahm, F. Klijn, Resilience in practice: Five principles to enable societies to cope with extreme weather events, Environmental Science & Policy, 70 (2017) 21-30.
[21] D. Kuang, K.-H. Liao, Learning from Floods: Linking flood experience and flood resilience, Journal of environmental management, 271 (2020) 111025.
[22] S.L. Cutter, L. Barnes, M. Berry, C. Burton, E. Evans, E. Tate, J. Webb, A place-based model for understanding community resilience to natural disasters, Global environmental change, 18(4) (2008) 598-606.
[23] M.J.P. Mens, F. Klijn, K.M. de Bruijn, E. van Beek, The meaning of system robustness for flood risk management, Environmental science & policy, 14(8) (2011) 1121-1131.
[24] N. Islam, R. Sadiq, M.J. Rodriguez, A. Francisque, Evaluation of source water protection strategies: a fuzzy-based model, Journal of environmental management, 121 (2013) 191-201.
[25] M. Fayaz, I. Ullah, D.-H. Park, K. Kim, D. Kim, An integrated risk index model based on hierarchical fuzzy logic for underground risk assessment, Applied Sciences, 7(10) (2017) 137-151.
[26] Ö. Ekmekcioğlu, K. Koc, M. Özger, District based flood risk assessment in Istanbul using fuzzy analytical hierarchy process, Stochastic Environmental Research and Risk Assessment, 35(3) (2021) 617-637.
[27] M. Disse, T.G. Johnson, J. Leandro, T. Hartmann, Exploring the relation between flood risk management and flood resilience, Water Security, 9 (2020) 59-68.
[28] A.M.A. Saja, A. Goonetilleke, M. Teo, A.M. Ziyath, A critical review of social resilience assessment frameworks in disaster management, International journal of disaster risk reduction, 35 (2019) 101096 %@ 102212-104209.
[29] Y.G. Lai, A two-dimensional depth-averaged sediment transport mobile-bed model with polygonal meshes, Water, 12(4) (2020) 1032.
[30] S. Dhungel, M.E. Barber, R.L. Mahler, Comparison of one-and two-dimensional flood modeling in urban environments, International journal of sustainable development and planning, 14(4) (2019) 356-366.
[31] I.D. Sumitra, S. Supatmi, Mamdani fuzzy inference system using three parameters for flood disaster forecasting in Bandung region, in, IOP Publishing, 2019, pp. 42-58.
[32] P.-c. Li, G.-h. Chen, L.-c. Dai, Z. Li, Fuzzy logic-based approach for identifying the risk importance of human error, Safety science, 48(7) (2010) 902-913.
[33] M. Fayaz, S. Ahmad, I. Ullah, D. Kim, A blended risk index modeling and visualization based on hierarchical fuzzy logic for water supply pipelines assessment and management, Processes, 6(5) (2018) 61-75.
[34] M. Fayaz, I. Ullah, D.-H. Kim, Underground risk index assessment and prediction using a simplified hierarchical fuzzy logic model and kalman filter, Processes, 6(8) (2018) 103-118.
[35] M.E. Banihabib, N. Chitsaz, T.O. Randhir, Non-compensatory decision model for incorporating the sustainable development criteria in flood risk management plans, SN Applied Sciences, 2(1) (2020) 1-11.
[36] M.S. Hashemi, F. Zare, A. Bagheri, A. Moridi, Flood assessment in the context of sustainable development using the DPSIR framework, International Journal of Environmental Protection and Policy, 2(2) (2014) 41-49.