[1] E. 1052-3, Methods of test for masonry, in: Determination of initial shear strength, 2002.
[2] A. C1531, Standard test methods for in situ measurement of masonry mortar joint shear strength index, in, American Society for Testing and Materials (ASTM) International, 2016.
[3] E. Cescatti, M. Dalla Benetta, C. Modena, 16th Analysis and evaluations of flat jack test on a wide existing masonry buildings sample, in: F. Casarin. (Ed.) International Brick & Block Masonry Conference, CRC Press London, , UK, 2016.
[4] A. A. Hamid, W. W. El-Dakhakhni, Z. H. Hakam, M. Elgaaly, Behavior of composite unreinforced masonry–fiber-reinforced polymer wall assemblages under in-plane loading, J. Compos. Constr., 9(1) (2005) 73-83.
[5] G. Andreotti, F. Graziotti, G. Magenes, Detailed micro-modelling of the direct shear tests of brick masonry specimens: the role of dilatancy, , Engineering Structures 168 (2018) 929–949.
[6] A. Brignola, S. Frumento, S. Lagomarsino, S. Podestà, dentification of shear parameters of masonry panels through the in-situ diagonal compression test, International Journal of Architectural Heritage, 3 (2009) 52-73.
[7] D. Marastoni, L. Pelà, A. Benedetti, P. Roca, Combining Brazilian tests on masonry cores and double punch tests for the mechanical characterization of historical mortars, Construction and Building Materials 112 (2016) 112-127.
[8] L. Pelà, K. Kasioumi, P. Roca, Experimental evaluation of the shear strength of aerial lime mortar brickwork by standard tests on triplets and non-standard tests on core samples, Eng. Struct. , 136 (2017) 441–453.
[9] L. Pelà, P. Roca, A. Benedetti, Mechanical characterization of historical masonry by core drilling and testing of cylindrical samples, Int. J. Archit. Heritage, 10(2-3) (2016) 360–374.
[10] A. Benedetti, L. Pelà, Masonry properties determination via splitting tests on cores with a rotated mortar layer., in: A. Aprile (Ed.) Proceedings of 8th International Seminar on Structural Masonry,, Istanbul, Turkey, 2008.
[11] S. Jafari, J.G. Rots, R. Esposito, Core testing method to assess nonlinear shear-sliding behaviour of brick-mortar interfaces: A comparative experimental study, Construction and Building Materials, 244 (2020) 118-236.
[12] J. Dorji, T. Zahra, D. Thambiratnam, D. Lee, Strength assessment of old masonry arch bridges through moderate destructive testing methods, Construction and Building Materials, 278 (2021) 122391.
[13] H.K. Hilsdorf, Masonry materials and their physical properties, in: Proc. of the International conference on planning and design of tall buildings, Lehigh University, Bethlehem, Pennsylvania, III, 1972, pp. 981-1000.
[14] A. Anthoine, A Homogenisation of periodic masonry: Plane stress, generalised plane strain or 3D modelling? , Comm. Num. Meth. Engrg 13 (1997) 319-326.
[15] G. Milani , P.B. Lourenço , A. Tralli, 3D homogenized limit analysis of masonry buildings under horizontal loads, Eng Struct, 29 (2007) 3134–3148.
[16] A. J. Aref, K. M. Dolatshahi, A three-dimensional cyclic meso-scale numerical procedure for simulation of unreinforced masonry structures, Computers and Structures, 120 (2013) 9-23.
[17] A. Drougkas, P. Roca, C. Molins, Numerical prediction of the behavior, strength and elasticity of masonry in compression, Eng. Struct., 90 (2015b) 15-28.
[18] H. Tavanaeifar, A.H. Akhaveissy, 3D Continuos Micro-Model based on Multilaminate Concept for the nonlinear numerical analysis of masonry panels, Amirkabir Journal of Civil Engineering, 53(11) (2022) 22-22.(in persian)
[19] ASTM, C496/C496M-17, in: Standard test method for splitting tensile strength of cylindrical concrete specimens, 2017.
[20] ASTM E519/E519M-15, Standard test method for diagonal tension (shear) in masonry assemblages, in, 2015.
[21] C. Mazzotti, E. Sassoni, G. Pagliai, Determination of shear strength of historic masonries by moderately destructive testing of masonry cores, Constr. Build.Mater., 54 (2014) 421–431.
[22] A. C144-11, Standard Specification for Aggregate for Masonry Mortar, in, American Society for Testing and Materials, 2011.
[23] ASTM, C348-02, in: Standard Test Method for flexural Strength of Hydraulic Cement Mortars, American Society for Testing and Materials, 2002.
[24] A. C109-07, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, in, American Society for Testing and Materials, American Society for Testing and Materials, 2007.
[25] P.B. Lourenco, Computational strategies for Masonry structures, thesis, The Netherlands: Delft University of Technology, 1996.
[26] M. Ghadrdan, S.A. Sadrnejad, T. Shaghaghi, Numerical evaluation of geomaterials behavior upon multiplane damage model, Computers and Geotechnics, 68 (2015) 1-7.
[27] V. Galavi, H.F. Schweiger, Nonlocal Multi-laminate Model for Strain Softening Analysis, Journal of Geomechanics, ASCE, 1(30) (2010) 1532-3641.
[28] A. B. Tsegaye, T. Benz, Plastic flow and state-dilatancy for geomaterials, Acta Geotechnica, 9 (2014) 329-342.
[29] M. Petracca, L. Pelà, R. Rossi, S. Zaghi, G. Camata, E. Spacone, Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls, Constr Build Mater, 149 (2017) 296–314.
[30] R. Van Der Pluijm, Shear behavior of bed joints, 6th North American Masonry Conference, 6-9 June 1993, Philadelphia, Pennsylvania, USA, (1993) 125_136.
[31] W. He, Y.-F. Wu, K.M. Liew, A fracture energy based constitutive model for the analysis of reinforced concrete structures under cyclic loading, Comput. Methods Appl. Mech. Engrg. , 197 (2008) 4745–4762.
[32] Z.P. Bazant, B.H. Oh, Crack band theory for fracture of concrete, RILEM Mater. Struct. Eng., 16 (1983) 155–177.
[33] R. Scotta, R. Vitaliani, A. Saetta, E. Oñate, A. Hanganu, A scalar damage model with a shear retention factor for the analysis of reinforced concrete structures: theory and validation, Computers and structures, 79(7) (2001) 737–755.
[34] M. Jirásek, M. Bauer, Numerical aspects of the crack band approach, Computers and Structures, 110-111 (2012) 60-78.
[35] P.H. Feenstra, R. De Borst, A composite plasticity model for concrete., Int. J. Solids Struct. , 33 (1996) 707–730.
[36] A.T. Vermeltfoort, D.R.W. Martens, G.P.A.G.V. Zijl, Brick-mortar interface effects on masonry under compression, Can. J. Civ. Eng., 34 (2007) 1475-1485.
[37] B. Karihaloo, Failure of Concrete, in: Comprehensive Structural Integrity, 2003, pp. 477–548.
[38] H. Nakamuraa, T. Nanrib, T. Miuraa, S. Roy, Experimental investigation of compressive strength and compressivefracture energy of longitudinally cracked concrete, Cement and Concrete Composites, 93 (2018) 1-18.
[39] Y-F. Li, C-T. Lin, Y-Y. Sung, A constitutive model for concrete confined with carbonfiber reinforced plastics, Mechanics of Materials, 35 (2002) 603–619.
[40] S. Suriya Prakash, M. Aqhtarudin, J. Suman Dhara, Behaviour of soft brick masonry small assemblies with and without strengthening under compression loading, Materials and Structures, 49 (2016) 2919–2934.
[41] B. V. Venkatarama Reddy, Ch. V. Uday Vyas, Influence of shear bond strength on compressive strength and stress–strain characteristics of masonry, Materials and Structures, 41 (2008) 1697–1712.
[42] Ch. V. Uday Vyas, B. V. Venkatarama Reddy, Prediction of solid block masonry prism compressive strength using FE model, Materials and Structures, 43 (2010) 719–735.
[43] B. Shen, J. Shi, N. Barton, An approximate nonlinear modified Mohr-Coulomb shear strength criterion with critical state for intact rocks, Journal of Rock Mechanics and Geotechnical Engineering, 10 (2018) 645-652.
[44] M. H. Motamedi, C. D. Foster, An improved implicit numerical integration of a non-associated, three-invariant cap plasticity model with mixed isotropic–kinematic hardening for geomaterials, 39(wileyonlinelibrary.com) (2015) 1853–1883.
[45] Y.G. Zhaoa, S. Lina, Z.H. Lub, T. Saitoa, L. He, Loading paths of confined concrete in circular concrete loaded CFT stub columns subjected to axial compression, Engineering Structures 156 (2018) 21-31.
[46] W. Chen, H. Konietzky, C. Liu, H. Fu, J. Zhang., Prediction of Brickwork Failure Using Discrete-Element Method, Journal of Materials in Civil Engineering, 30(9) (2018).