[1] A.A. Ramezanianpour, T. Parhizkar, A.R. Pourkhorshidi, A.M. Raisghasemi, The effect of environmental conditions on the southern coast of Iran on the long-term durability of concrete with different cements and pozzolans, Building and Housing Research Center, 434 (1996). (In Persian)
[2] K. Audenaert, Q. Yuan, G. De Schutter, On the time dependency of the chloride migration coefficient in concrete, Construction and Building Materials, 24 (2010) 396–402.
[3] C. Shi, Strength, pore structure and permeability of alkali-activated slag mortars, Cement and Concrete Research, 26 (1996) 1789–1799.
[4] M. Ka, D. Hoffmann, L. Molez, Ch. Lanos, Alkali-activated mortars: porosity and capillary absorption, European Journal Of Environmental And Civil Engineering, (2022) 1-15.
[5] D.E.A. Ramirez, W.G. Valencia-Saavedra, R.M. Gutierrez, Alkali-activated concretes based on fly ash and blast furnace slag: Compressive strength, water absorption and chloride permeability, Ingenieriae Investigacion, 40 (2) (2020) 72-80.
[6] Z. Zhang, X. Yao, H. Zhu, Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties, Applied Clay Science, 49 (2010) 1–6.
[7] A.A. Adam, Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete, PhD thesis, RMIT University, 2009.
[8] E. Rodriguez, S. Bernal, R. Mejia de Gutierrez, F. Puertas, Alternative concrete based on alkali-activated slag, Journal of Materiales de Construcción, 58 (291) (2008) 53–67.
[9] S.A. Bernal, R. Mejia de Gutierrez, A.L. Pedraza, J.L. Provis, E.D. Rodriguez, S. Delvasto, Effect of binder content on the performance of alkali-activated slag concretes, Cement and Concrete Research, 41 (1) (2011) 1-8.
[10] T. Häkkinen, The permeability of high strength blast furnace slag concrete, Nordic Concrete Research, 11 (1) (1992) 55-66.
[11] S. Bernal, R. De Gutierrez, S. Delvasto, E. Rodriguez, Performance of an alkali-activated slag concrete reinforced with steel fibers, Construction and Building Materials, 24 (2) (2010) 208-214.
[12] A.A. Adam, T.C.K. Molyneaux, I. Patnaikuni, D.W. Law, Strength, sorptivity and carbonation of geopolymer concrete, In: Ghafoori, N. (ed.) Challenges, Opportunities and Solutions in Structural Engineering and Construction, CRC Press, Boca Raton (2009) 563-568.
[13] F. Alapour, A.A. Ramezanianpour, Feasibility study of production of geopolymer mortars from several supplimentry cement materials, Master Thesis, Amirkabir University of Technology, 2012. (In Persian)
[14] S.A. Bernal, R. Mejia de Gutierrez, V. Rose, J.L. Provis, Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags, Cement and Concrete Research, 40 (6)(2010) 898-908.
[15] F. Collins, J. Sanjayan, Unsaturated capillary fl ow within alkali activated slag concrete, Journal of Materials in Civil Engineering, 20 (9) (2008) 565-570.
[16] A. Runci, M. Serdar, Effect of curing time on the chloride diffusion of alkali-activated slag, Case Studies in Construction Materials, 16 (2022) e00927.
[17] A. Noushini, A. Castel, Performance-based criteria to assess the suitability of geopolymer concrete in marine environments using modified ASTM C1202 and ASTM C1556 methods, Materials and Structures, (2018) 51:146.
[18] J. Fan, H. Zhu, J. Shi, Z. Li, S. Yang, Influence of slag content on the bond strength, chloride penetration resistance, and interface phase evolution of concrete repaired with alkali activated slag/fly ash, Construction and Building Materials, (263) (2020) 208-214.
[19] E. Douglas, A. Bilodeau, V.M. Malhotra, Properties and durability of alkali-activated slag concrete, ACI Mater. J., (89) (5) (1992) 509-516.
[20] G. Fagerlund, On the capillarity of concrete, Nordic Concrete Research, 1 (1982) 1-20.
[21] D. Wimpenny, P. Duxson, T. Cooper, J.L.J. Provis, R., Zeuschner, Fibre reinforced geopolymer concrete products for underground infrastructure, In: Concrete 2011, Perth, Australia. CD-ROM proceedings, Concrete Institute of Australia (2011).
[22] X. Hu, C. Shi, Zh. Shi, L. Zhang, Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars, Cement and Concrete Composites, 104 (2019) 92-119.
[23] D. Hardjito, S.E. Wallah, M.J. Sumajouw, B.V. Rangan, On the Development of Fly Ash- Based Geopolymer Concrete, ACI Material Journal, 101 (6) (2004) 467-472.
[24] A. Nazari, Gh. Khalaj, Sh. Riahi, ANFIS-based prediction of the compressive strength of geopolymers with seeded fly ash and rice husk-bark ash, Neural Computing and Applications, 22 (2013) 689-701.
[25] M. Jafari Nadoushan, P. Dashti, S. Ranjbar, A.A Ramezanianpour, A.M. Ramezanianpour, R. Banar, RSM-based Optimized Mix Design of Alkali-activated Slag Pastes Based on the Fresh and Hardened Properties and Unit Cost, Journal of Advanced Concrete Technology, 20 (4) (2022) 300-312.
[26] ASTM, 2012. C778, Standard Specification for Standard Sand, ASTM International, West Conshohocken, PA, (2012).
[27] ASTM C305, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, ASTM International, West Conshohocken, PA, (2012).
[28] ASTM C1437, Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, (2012).
[29] ASTM C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, (2012).
[30] BS EN 1881-122, Testing concrete. Method for determination of water absorption, British Standard, (2011).
[31] BS EN 480-5, Admixtures for concrete, mortar, and grout test methods- Part 5: Determination of capillary absorption, British Standard, (2005).
[32] ASTM C1152, Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete, ASTM International, West Conshohocken, PA, (2012).
[33] H.M. Giasuddin, J.G. Sanjayan, P.G. Ranjith, Strength of geopolymer cured in saline water in ambient conditions, Journal of Fuel, 107 (2013) 34–39.
[34] H. Xu, J.S.J. Van Deventer, The geopolymerisation of aluminosilicate minerals, International Journal of Mineral Processing, (2000) 59-66.
[35] T. Yang, X. Yao, Z. Zhang, Quantification of chloride diffusion in fly ash–slag-based geopolymers by X-ray fluorescence (XRF), Construction and Building Materials, 69 (2014) 109–115.
[36] I. Ismail, S.A. Bernal, J.L. Provis, R.S. Nicolas, D.G. Brice, A.R. Kilcullen, S. Hamdan, J.S.J. Van Deventer, Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes, Construction and Building Materials, 48 (2013) 1187-1201.
[37] R.J. Thomas, E. Ariyachandra, D. Lezama, S. Peethamparan, Comparison of chloride permeability methods for Alkali-Activated concrete, Construction and Building Materials, 165 (2018) 104–111.