[1] R. Rehan, M. Nehdi, Carbon dioxide emissions and climate change: policy implications for the cement industry, Environmental Science & Policy, 8(2) (2005) 105-114.
[2] F. Gouny, F. Fouchal, O. Pop, P. Maillard, S. Rossignol, Mechanical behavior of an assembly of wood–geopolymer–earth bricks, Construction and Building Materials, 38 (2013) 110-118.
[3] A. Pappu, V.K. Thakur, R. Patidar, S.R. Asolekar, M. Saxena, Recycling marble wastes and Jarosite wastes into sustainable hybrid composite materials and validation through Response Surface Methodology, Journal of Cleaner Production, 240 (2019) 118249.
[4] K.L. Scrivener, R.J. Kirkpatrick, Innovation in use and research on cementitious material, Cement and concrete research, 38(2) (2008) 128-136.
[5] R.M. Andrew, Global CO 2 emissions from cement production, Earth System Science Data, 10(1) (2018) 195-217.
[6] M.E. Alouani, S. Alehyen, M.E. Achouri, A. Hajjaji, C. Ennawaoui, M.h. Taibi, Influence of the Nature and Rate of Alkaline Activator on the Physicochemical Properties of Fly Ash-Based Geopolymers, Advances in Civil Engineering, 2020 (2020).
[7] D. Higgins, Briefing: GGBS and sustainability, in, Thomas Telford Ltd, 2007.
[8] G. Vijayakumar, H. Vishaliny, D. Govindarajulu, Studies on glass powder as partial replacement of cement in concrete production, International Journal of Emerging Technology and Advanced Engineering, 3(2) (2013) 153-157.
[9] J. Davidovits, False values on CO2 emission for geopolymer cement/concrete published in scientific papers, Technical paper, 24 (2015) 1-9.
[10] M. Abdullah, L.Y. Ming, H.C. Yong, M. Tahir, Clay-based materials in geopolymer technology, Cement Based Materials, 239 (2018).
[11] A.K. Thakur, A. Pappu, V.K. Thakur, Resource efficiency impact on marble waste recycling towards sustainable green construction materials, Current Opinion in Green and Sustainable Chemistry, 13 (2018) 91-101.
[12] T.A. Garcí, M. de Lourdes Chávez-Garcí, Compressive strength of metakaolin-based geopolymers: influence of koh concentration, temperature, time and relative humidity, Materials Sciences and Applications, 7(11) (2016) 772-791.
[13] A.L. Wijaya, J.J. Ekaputri, Factors influencing strength and setting time of fly ash based-geopolymer paste, in: MATEC Web of Conferences, EDP Sciences, 2017, pp. 01010.
[14] A. Nazari, H. Khanmohammadi, M. Amini, H. Hajiallahyari, A. Rahimi, Production geopolymers by Portland cement: designing the main parameters’ effects on compressive strength by Taguchi method, Materials & Design, 41 (2012) 43-49.
[15] P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S. van Deventer, Geopolymer technology: the current state of the art, Journal of materials science, 42(9) (2007) 2917-2933.
[16] S. Andini, R. Cioffi, F. Colangelo, T. Grieco, F. Montagnaro, L. Santoro, Coal fly ash as raw material for the manufacture of geopolymer-based products, Waste management, 28(2) (2008) 416-423.
[17] J.L. Provis, S.A. Bernal, Geopolymers and related alkali-activated materials, Annual Review of Materials Research, 44 (2014) 299-327.
[18] A. Palomo, M. Grutzeck, M. Blanco, Alkali-activated fly ashes: A cement for the future, Cement and concrete research, 29(8) (1999) 1323-1329.
[19] D. Hardjito, S.E. Wallah, D.M. Sumajouw, B.V. Rangan, On the development offly ash-based geopolymer concrete, Materials Journal, 101(6) (2004) 467-472.
[20] C. Shi, R.L. Day, Chemical activation of blended cements made with lime and natural pozzolans, Cement and Concrete Research, 23(6) (1993) 1389-1396.
[21] Á. Palomo, E. Kavalerova, A. Fernández-Jiménez, P. Krivenko, I. García-Lodeiro, O. Maltseva, A review on alkaline activation: new analytical perspectives, (2015).
[22] J.L. Provis, J.S.J. Van Deventer, Geopolymers: structures, processing, properties and industrial applications, Elsevier, 2009.
[23] P. Sargent, P.N. Hughes, M. Rouainia, M.L. White, The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils, Engineering geology, 152(1) (2013) 96-108.
[24] M. Bellotto, A. Gualtieri, G. Artioli, S. Clark, Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite dehydroxylation, Physics and chemistry of minerals, 22(4) (1995) 207-217.
[25] L.R. Caballero, M.d.D.M. Paiva, E.d.M.R. Fairbairn, R.D. Toledo, Thermal, mechanical and microstructural analysis of metakaolin based geopolymers, Materials Research, 22 (2019).
[26] H. Xu, J. Van Deventer, Geopolymerisation of multiple minerals. vol. 15, Miner Eng, (2002) 00255-00258.
[27] M. Woodbridge, Use of soft limestone for road-base construction in Belize, Transportation research record, 1652(1) (1999) 181-191.
[28] S.G. Maryam Alizadeh, Ali Almasi, Basics of sample preparation for scanning electron microscope, in: Iranian Journal Of Laboratory Knowledge, 1392. (In Persian)
[29] A.H.b. Somaye Mirjalili, The process of implementing a quality management system based on ISO/IEC 17025 in testing laboratories, Iranian Journal Of Laboratory Knowledge, (1394).In Persian)
[30] Y. Nazir, S. Shuib, M.S. Kalil, Y. Song, A.A. Hamid, Optimization of culture conditions for enhanced growth, lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium SW1 by response surface methodology, Scientific reports, 8(1) (2018) 1-12.
[31] B. Aouan, S. Alehyen, M. Fadil, M.E. Alouani, A. Khabbazi, A. Atbir, M.h. Taibi, Compressive strength optimization of metakaolin‐based geopolymer by central composite design, Chemical Data Collections, 31 (2021) 100636.
[32] A. Arulrajah, M. Yaghoubi, M.M. Disfani, S. Horpibulsuk, M.W. Bo, M. Leong, Evaluationof fly ash-and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing, Soils and foundations, 58(6) (2018) 1358-1370.
[33] H. Jiang, Z. Qi, E. Yilmaz, J. Han, J. Qiu, C. Dong, Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills, Construction and Building Materials, 218 (2019) 689-700.
[34] S. Hanjitsuwan, S. Hunpratub, P. Thongbai, S. Maensiri, V. Sata, P. Chindaprasirt, Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste, Cement and Concrete Composites, 45 (2014) 9-14.
[35] A. Hameed, R. Rawdhan, S. Al-Mishhadani, Effect of various factors on the manufacturing of geopolymer mortar, Archives of Science, 1(3) (2017) 1-8.
[36] H. Xu, J. Van Deventer, The geopolymerisation of alumino-silicate minerals, International journal of mineral processing, 59(3) (2000) 247-266.
[37] C. Villa, E.T. Pecina, R. Torres, L. Gómez, Geopolymer synthesisusing alkaline activation of natural zeolite, Construction and Building Materials, 24(11) (2010) 2084-2090.
[38] H.A. Gasteiger, W.J. Frederick, R.C. Streisel, Solubility of aluminosilicates in alkaline solutions and a thermodynamic equilibrium model, Industrial & engineering chemistry research, 31(4) (1992) 1183-1190.
[39] G.S. Ryu, Y.B. Lee, K.T. Koh, Y.S. Chung, The mechanical properties of fly ash-based geopolymer concrete with alkaline activators, Construction and building materials, 47 (2013) 409-418.
[40] A. Sathonsaowaphak, P. Chindaprasirt, K. Pimraksa, Workability and strength of lignite bottom ash geopolymer mortar, Journal of Hazardous Materials, 168(1) (2009) 44-50.
[41] S. Alonso, A. Palomo, Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio, Materials Letters, 47(1-2) (2001) 55-62.
[42] P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, U. Rattanasak, Comparative study on the characteristics of fly ash and bottom ash geopolymers, Waste management, 29(2) (2009) 539-543.
[43] A. Palomo, M.T. Blanco-Varela, M. Granizo, F. Puertas, T. Vazquez, M. Grutzeck, Chemical stability of cementitious materials based on metakaolin, Cement and Concrete research, 29(7) (1999) 997-1004.
[44] A. Mustafa Al Bakri, O.A. Abdulkareem, H. Kamarudin, I. Khairul Nizar, R. Abd Razak, Y. Zarina, A. Alida, Microstructure studies on the effect of the alkaline activators of fly ash-based geopolymer at elevated heat treatment temperature, in: Applied Mechanics and Materials, Trans Tech Publ, 2013, pp. 342-348.
[45] M. Ibrahim, M.A.M. Johari, M.K. Rahman, M. Maslehuddin, Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete, Construction and building materials, 147 (2017) 648-660.
[46] A. Fernández-Jiménez, A. Palomo, Characterisation of fly ashes. Potential reactivity as alkaline cements☆, Fuel, 82(18) (2003) 2259-2265.
[47] M. Choquette, M.-A. Berube, J. Locat, Behavior of common rock-forming minerals in a strongly basic NaOH solution, The Canadian Mineralogist, 29(1) (1991) 163-173.
[48] P. Palmero, A. Formia, P. Antonaci, S. Brini, J.-M. Tulliani, Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization, Ceramics International, 41(10) (2015) 12967-12979.
[49] A. Palomo, F. Glasser, Chemically-bonded cementitious materials based on metakaolin, British ceramic. Transactions and journal, 91(4) (1992) 107-112.
[50] H. Rahier, B. Van Mele, M. Biesemans, J. Wastiels, X. Wu, Low-temperature synthesized aluminosilicate glasses, Journal of materials science, 31(1) (1996) 71-79.
[51] M. Zhang, H. Guo, T. El-Korchi, G. Zhang, M. Tao, Experimental feasibility study of geopolymer as the next-generation soil stabilizer, Construction and building materials, 47 (2013) 1468-1478.
[52] M. Yang, Y. Zheng, X. Li, X. Yang, F. Rao, L. Zhong, Durability of alkali-activated materials with different C–S–H and NASH gels in acid and alkaline environment, Journal of Materials Research and Technology, 16 (2022) 619-630.