[1] D.G. Fredlund, H. Rahardjo, Soil mechanics for unsaturated soils, A Wiley inter-science publication, (1993), New York.
[2] J. Xu, C. Liu, Liquefaction potential of unsaturated nevada sand at different initial conditions, Thesis for University of South Carolina, (2012).
[3] D.G. Fredlund, N.R. Morgenstern, R.A. Widger, The shear strength of unsaturated soils, Canadian Geotechnical Journal, 15(3) (1978) 313–321.
[4] Y.J. Cui, P. Delage, Yielding and plastic behaviour of an unsaturated compacted silt, Geotechnique, 46(2) (1996) 291-311.
[5] H. Toyota, K. Nakamura, N. Sakai, W. Sramoon, Mechanical Properties of Unsaturated Cohesive Soil in Consideration of Tensile Stress, Soils and Foundations, 43(2) (2003) 115-122.
[6] N. Nishimatsu, Y.S. Kim, T. Kodaka, S. Kimoto, triaxial compressive behavior of low saturated compacted silt under constant volume and unexhuasted air conditions, Proc . of 44th annual meeting of JGS, Japan, (2004) 831-832.
[7] F. Geiser, L. Laloui, L. Vulliet, Elasto-Plasticity of Unsaturated Soils: Laboratory Test Results on a Remoulded Silt, Soils and Foundations, 46(5) (2006) 545-556.
[8] T. Yabuki, F. Oka, S. Kimoto, Mechanical behavior of unsaturated silt under cyclic loading , Proc . of 42nd annual meeting of JGS, Japan, (2007) 771-772.
[9] T. Unno, M. Kazama, N. Sento, Liquefaction of Unsaturated Sand Considering the Pore Air Pressure and Volume Compressibility of the Soil Particle Skeleton, Soils and Foundations, 48(1) (2008) 87-99.
[10] T. Nishimura, J. Koseki, Attempt of cyclic triaxial test for an unsaturated silty soil under undrained condition, Proc . of 44th annual meeting of JGS, Japan, (2009) 641-642.
[11] S. Kimoto, F. Oka, J. Fukutani, T. Yabuki, K. Nakashima, Monotonic and Cyclic Behavior of Unsaturated Sandy Soil Under Drained and Fully Undrained Conditions, Soils and Foundations, 51(4) (2011) 663-681.
[12] Y. Tsukamoto, S. Kawabeb, Jo. Matsumoto, S. Hagiwara, Cyclic resistance of two unsaturated silty sands against soil liquefaction, Soils and Foundations, 54(6) (2014) 1094-1103.
[13] M. Vernay, M. Morvan, P. Breul, Influence of saturation degree and role of suction in unsaturated soils
behaviour: application to liquefaction, E3S Web of Conferences, 9 (2016) 1-6.
[14] Y. Tsukamoto, Degree of saturation affecting liquefaction resistance and undrained shear strength of silty sands, Soil Dynamics and Earthquake Engineering, https://doi.org/10.1016/j.soildyn.2018.04.041.
[15] L. Mele, J.T. Tian, S. Lirer, A. Flora, J. Koseki, Liquefaction resistance of unsaturated sands: experimental evidences and theoretical interpretation, Geotechnique, 69(6) (2019) 541-553.
[16] L. Mele, A. Flora, On the prediction of liquefaction resistance of unsaturated sands, Soil Dynamics and Earthquake Engineering, 125 (2019) 105689.
[17] K.H. Tran, S. Imanzadeh, S. Taibi, D.L. Dao, Liquefaction Behavior of Dense Sand Relating to the Degree of Saturation. In: Duc Long P., Dung N. (eds) Geotechnics for Sustainable Infrastructure Development, Lecture Notes in Civil Engineering, 62 (2020) 879-886.
[18] R. Ladd, Preparing Test Specimens Using Undercompaction, Geotechnical Testing Journal, 1(1) (1978) 16-23.
[19] K. Been, M.G. Jefferies, J. Hachey, The critical state of sands, Géotechnique, 41(3) (1991) 365-381.
[20] M. Okamura, K. Noguchi, Liquefaction resistances of unsaturated non-plastic silt, Soils and Foundations, 49(2) (2009) 221–229.
[21] صادق زادگان، ر. "رفتار دینامیکی ماسه رس دار غیراشباع"، رساله دکتری، دانشگاه بینالمللی امام خمینی (ره)، 1396.
[22] M. Okamura, Y. Soga, Effects Of Pore Fluid Compressibility On Liquefaction Resistance Of Partially Saturated Sand, Soils and Foundations, 46(5) (2006) 695–700.
[23] H. Wang, J. Koseki, T. Sato, G. Chiaro, J.T. Tian, Effect of saturation on liquefaction resistance of iron ore fines and two sandy soils, Soils and Foundations, 56(4) (2016) 732–744.
[24] K. Ishihara, Liquefaction and Flow Failure during Earthquakes. Geotechnique, 43(3) (1993) 351-415.
[25] A. Shafiee, Cyclic Resistance, Pre and Post-Liquefaction Behavior of Dry Pluviated Silty Sands, Journal of Seismology and Earthquake Engineering, 8(3) (2006) 163-175.
[26] S.S. Kumar, A. Dey, A.M. Krishna, Liquefaction Potential Assessment of Brahmaputra Sand Based on Regular and Irregular Excitations Using Stress-Controlled Cyclic Triaxial Test, KSCE Journal of Civil Engineering, 24 (2020) 1070–1082.
[27] Y.B. Sonmezer, A. Akyuz, K. Kayabali, Investigation of the effect of grain size on liquefaction potential of sands, Geomechanics and Engineering, 20(3) (2020) 243-254.
[28] P. Chakrabortty, A. Das, Anil, Effect of Soil Grain Size on Liquefaction Strength of Sandy Soil. In: Latha Gali M., Raghuveer Rao P. (eds) Geohazards. Lecture Notes in Civil Engineering, 86 (2021) Springer, Singapore. https://doi.org/10.1007/978-981-15-6233-4_38.
[29] S. Yasuda, T. Kobayashi, Y. Fukushima, M. Kohari, T. Simazaki, Effect of degree of saturation on the liquefac-tion strength of Masa, Proc. 34th Jpn. Nat. Conf. Geotech. Engrg., (1999) 2071-2072.
[30] S. Huang, S.L. Barbour, D.G. Fredlund, Development and verification of a coefficient of permeability function for a deformable unsaturated soil, Canadian Geotechnical Journal, 35(3) (1998) 411–425.
[31] Y. Yoshimi, K. Tanaka, K. Tokimatsu, Liquefaction resistance of a partially saturated sand, Soils and Foundations, 29(3) (1989) 157-162.