[1] N. Mehrabi, M. Soleimani, M.M. Yeganeh, H. Sharififard, Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles, RSC advances, 5(64) (2015) 51470-51482.
[2] P.C. Mishra, R.K. Patel, Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium, Journal of Eenvironmental Management, 90(1) (2009) 519-522.
[3] J.M. Rodríguez-Maroto, F. García-Herruzo, A. García-Rubio, C. Gómez-Lahoz, C. Vereda-Alonso, Kinetics of the chemical reduction of nitrate by zero-valent iron, Chemosphere, 74(6) (2009) 804-809.
[4] T.M. Addiscott, A.P. Whitmore, D.S. Powlson, Farming, fertilizers and the nitrate problem, CAB International (CABI), 1991.
[5] S. Water, O. World Health, Guidelines for drinking-water quality [electronic resource]: incorporating first addendum. Vol. 1, Recommendations, (2006).
[6] L.C. Neri, H.L. Johansen, D. Hewitt, J. Marier, N. Langner, Magnesium and certain other elements and cardiovascular disease, Science of the Total Environment, 42(1-2) (1985) 49-75.
[7] H. Sharififard, A. Lashnizadegan, Z. Hashemi-shahraki, Modeling the mass transfer of the adsorption process of cadmium with activated carbon synthesized from grape pulp, Iranian Journal of Chemistry and Chemical Engineering, (2017), (in persian).
[8] S. Chatterjee, D.S. Lee, M.W. Lee, S.H. Woo, Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate, Journal of Hazardous Materials, 166(1) (2009) 508-513.
[9] M. Ahmadi, H. Rahmani, B. Ramavandi, B. Kakavandi, Removal of nitrate from aqueous solution using activated carbon modified with Fenton reagents, Desalination and Water Treatment, 76 (2017) 265-275.
[10] R.S. Dongre, Phosphate & nitrate removal from agricultural runoff by chitosan-graphite composite, Research & Development in Material Science, (2018) 11.
[11] A. Alighardashi, Z. Kashitarash Esfahani, F. Najafi, Investigating the efficiency of functionalized PAMAM-GO nano-composite for nitrate removal from aqua solutions, Journal of Water and Wastewater; Ab va Fazilab (in persian), 29(6) (2019) 79-90.
[12] M. Farasati, S. Boroomand Nasab, H. Moazed, N. Jafarzadeh Haghighifard, J. Abedi Koupai, M. Seyedian, Nitrate removal from contaminated waters by using anion exchanger phragmites australis nanoparticles, Journal of Water and Wastewater; Ab va Fazilab (in persian), 24(1) (2013) 34-42.
[13] A. Pourkhabbaz, A. Zeidi, F. Mehrjo, Survey of nitrate removal method from aqueous solutions using titanium dioxide nano-photocatalyst, Journal of Health, 10(4) (2020) 396-410.
[14] H. Golstanifar, S. Nasseri, A.H. Mahvi, M.H. Dehghani, A. Asadi, Evaluation of aluminum powder efficiency in removal of nitrate from aqueous solutions, Journal of Health and Hygiene, 2(5) (2011) 36-40.
[15] M.T. Ghaneian, M.H. Ehrampoush, M. Safdari, M. Emamjomeh, M. Askarishahi, Performance of olive pit ash's in nitrate removal from the aqueous solutions, Tolooebehdasht, 13(2) (2014) 168-177.
[16] H. Demiral, G. Gündüzoğlu, Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse, Bioresource Technology, 101(6) (2010) 1675-1680.
[17] L. Niazi, A. Lashanizadegan, H. Sharififard, Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions, Journal of Cleaner Production, 185 (2018) 554-561.
[18] Z.H. shahraki, H. Sharififard, A. Lashanizadegan, Grape stalks biomass as raw material for activated carbon production: synthesis, characterization and adsorption ability, Materials Research Express, 5(5) (2018) 055603.
[19] H. Sharififard, E. Rezvanpanah, S.H. Rad, A novel natural chitosan/activated carbon/iron bio-nanocomposite: Sonochemical synthesis, characterization, and application for cadmium removal in batch and continuous adsorption process, Bioresource Technology, 270 (2018) 562-569.
[20] Ş. Taşar, F. Kaya, A. Özer, Biosorption of lead (II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies, Journal of Environmental Chemical Engineering, 2(2) (2014) 1018-1026.
[21] G. Vázquez, M.S. Freire, J. González-Alvarez, G. Antorrena, Equilibrium and kinetic modelling of the adsorption of Cd2+ ions onto chestnut shell, Desalination, 249(2) (2009) 855-860.
[22] Z. Hu, L. Lei, Y. Li, Y. Ni, Chromium adsorption on high-performance activated carbons from aqueous solution, Separation and Purification Technology, 31(1) (2003) 13-18.
[23] M. Barkat, D. Nibou, S. Chegrouche, A. Mellah, Kinetics and thermodynamics studies of chromium (VI) ions adsorption onto activated carbon from aqueous solutions, Chemical Engineering and Processing: Process Intensification, 48(1) (2009) 38-47.
[24] R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecological Engineering, 91 (2016) 317-332.
[25] F. Deniz, Potential use of shell biomass (Juglans regia L.) for dye removal: Relationships between kinetic pseudo-second-order model parameters and biosorption efficiency, Desalination and Water Treatment, 52(1-3) (2014) 219-226.
[26] M. Naushad, M.A. Khan, Z.A. Alothman, M.R. Khan, M. Kumar, Adsorption of methylene blue on chemically modified pine nut shells in single and binary systems: isotherms, kinetics, and thermodynamic studies. Desalination and Water Treatment, 57 (2015) 15848–15861.
[27] H. Sharififard, F. Pepe, M. Soleimani, P. Aprea, D. Caputo, Iron-activated carbon nanocomposite: synthesis, characterization and application for lead removal from aqueous solution, RSC Advances, 6(49) (2016) 42845-42853.
[28] G.E. Boyd, A.W. Adamson, L.S. Myers Jr, The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1, Journal of the American Chemical Society, 69(11) (1947) 2836-2848.
[29] G. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthes, M. Krimissa, Sorption isotherms: A review on physical bases, modeling and measurement, Applied Geochemistry, 22(2) (2007) 249-275.
[30] D. Mohan, C.U. Pittman Jr, Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, Journal of Hazardous Materials, 137(2) (2006) 762-811.
[31] M.H. Beyki, H. Alijani, Y. Fazli, Poly o-phenylenediamine–MgAl@ CaFe2O4 nanohybrid for effective removing of lead (II), chromium (III) and anionic azo dye, Process Safety and Environmental Protection, 102 (2016) 687-699.
[32] S. Asgarzadeh, R. Rostamian, E. Faez, A. Maleki, H. Daraei, Biosorption of Pb (II), Cu (II), and Ni (II) ions onto novel lowcost P. eldarica leaves-based biosorbent: isotherm, kinetics, and operational parameters investigation, Desalination and Water Treatment, 57(31) (2016) 14544-14551.
[33] J. Febrianto, A.N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, Journal of Hazardous Materials, 162(2-3) (2009) 616-645.
[34] Y. Sağ, Y. Aktay, Kinetic studies on sorption of Cr (VI) and Cu (II) ions by chitin, chitosan and Rhizopus arrhizus, Biochemical Engineering Journal, 12(2) (2002) 143-153.
[35] C. Namasivayam, D. Sangeetha, Removal and recovery of vanadium (V) by adsorption onto ZnCl2 activated carbon: kinetics and isotherms, Adsorption, 12(2) (2006) 103-117.
[36] Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi, A. Montiel, Heavy metal removal from aqueous solutions by activated phosphate rock, Journal of Hazardous Materials, 156(1-3) (2008) 412-420.
[37] C. Namasivayam, M.V. Sureshkumar, Removal and recovery of molybdenum from aqueous solutions by adsorption onto surfactant‐modified coir pith, a lignocellulosic polymer, CLEAN–Soil, Air, Water, 37(1) (2009) 60-66.
[38] T. Mathialagan, T. Viraraghavan, Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass, Bioresource Technology, 100(2) (2009) 549-558.
[39] P.N. Fotsing, N. Bouazizi, E.D. Woumfo, N. Mofaddel, F. Le Derf, J. Vieillard, Investigation of chromate and nitrate removal by adsorption at the surface of an amine-modified cocoa shell adsorbent, Journal of Environmental Chemical Engineering, 9(1) (2021) 104618.
[40] P. Karthikeyan, S.S. Elanchezhiyan, J. Preethi, K. Talukdar, S. Meenakshi, C.M. Park, Two-dimensional (2D) Ti3C2Tx MXene nanosheets with superior adsorption behavior for phosphate and nitrate ions from the aqueous environment, Ceramics International, 47(1) (2021) 732-739.
[41] P. Karthikeyan, S. Meenakshi, Fabrication of hybrid chitosan encapsulated magnetic-kaolin beads for adsorption of phosphate and nitrate ions from aqueous solutions, International Journal of Biological Macromolecules, 168 (2021) 750-759.
[42] S. Rahdar, K. Pal, L. Mohammadi, A. Rahdar, Y. Goharniya, S. Samani, G.Z. Kyzas, Response surface methodology for the removal of nitrate ions by adsorption onto copper oxide nanoparticles, Journal of Molecular Structure, 1231 (2021) 129686.
[43] Y. Wang, X. Song, Z. Xu, X. Cao, J. Song, W. Huang, X. Ge, H. Wang, Adsorption of nitrate and ammonium from water simultaneously using composite adsorbents constructed with functionalized biochar and modified zeolite, Water, Air, & Soil Pollution, 232(5) (2021) 1-19.
[44] H. Nassar, A. Zyoud, A. El-Hamouz, R. Tanbour, N. Halayqa, H.S. Hilal, Aqueous nitrate ion adsorption/desorption by olive solid waste-based carbon activated using ZnCl2, Sustainable Chemistry and Pharmacy, 18 (2020) 100335.
[45] Q. Hu, H. Liu, Z. Zhang, Y. Xie, Nitrate removal from aqueous solution using polyaniline modified activated carbon: Optimization and characterization, Journal of Molecular Liquids, 309 (2020) 113057.