[1] H. Li, S. Li, J. Ou, H. Li, Modal identification of bridges under varying environmental conditions: temperature and wind effects, Structural Control and Health Monitoring, 17(5) (2010) 495-512.
[2] S.N. Pakzad, Development and deployment of large scale wireless sensor network on a long-span bridge, Smart Structures and Systems, 6(5-6) (2010) 525-543.
[3] Y. Ding, A. Li, D. Du, T. Liu, Multi-scale damage analysis for a steel box girder of a long-span cable-stayed bridge, Structure and Infrastructure Engineering, 6(6) (2010) 725-739.
[4] A. Gheitasi, O.E. Ozbulut, S. Usmani, M. Alipour, D.K. Harris, Experimental and analytical vibration serviceability assessment of an in-service footbridge, Case Studies in Nondestructive Testing and Evaluation, 6 (2016) 79-88.
[5] S.W. Doebling, C.R. Farrar, M.B. Prime, A summary review of vibration-based damage identification methods, Shock and vibration digest, 30(2) (1998) 91-105.
[6] F. Amini, Y. Hedayati, Underdetermined blind modal identification of structures by earthquake and ambient vibration measurements via sparse component analysis, Journal of Sound and Vibration, 366 (2016) 117-132.
[7] J. Brownjohn, F. Magalhaes, E. Caetano, A. Cunha, Ambient vibration re-testing and operational modal analysis of the Humber Bridge, Engineering Structures, 32(8) (2010) 2003-2018.
[8] A. Bagheri, M. Alipour, O.E. Ozbulut, D.K. Harris, Identification of Flexural Rigidity in Bridges with Limited Structural Information, Journal of Structural Engineering, 144(8) (2018) 04018126.
[9] A. Bagheri, M. Alipour, S. Usmani, O.E. Ozbulut, D.K. Harris, Structural stiffness identification of skewed slab bridges with limited information for load rating purpose, Dynamics of Civil Structures, Volume 2, (2017) 243-249.
[10] Y. Tian, J. Zhang, Q. Xia, P. Li, Flexibility identification and deflection prediction of a three-span concrete box girder bridge using impacting test data, Engineering Structures, 146 (2017) 158-169.
[11] K.-C. Chang, C.-W. Kim, Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge, Engineering Structures, 122 (2016) 156-173.
[12] L.S. Hogan, L. Wotherspoon, S. Beskhyroun, J. Ingham, Dynamic field testing of a three-span precast-concrete bridge, Journal of Bridge Engineering, 21(12) (2016) 06016007.
[13] A. Bagheri, O.E. Ozbulut, D.K. Harris, M. Alipour, A. Zare Hosseinzadeh, A hybrid experimental-numerical approach for load rating of reinforced concrete bridges with insufficient structural properties, Structure and Infrastructure Engineering, 15(6) (2019) 754-770.
[14] A.K. Ndong, M.S. Dizaji, M. Alipour, O.E. Ozbulut, D.K. Harris, Load Rating of a Reinforced Concrete T-beam Bridge through Ambient Vibration Testing and Finite Element Model Updating, Dynamics of Civil Structures, Volume 2, (2019) 337-343.
[15] A. Bagheri, M. Alipour, O.E. Ozbulut, D.K. Harris, A nondestructive method for load rating of bridges without structural properties and plans, Engineering Structures, 171 (2018) 545-556.
[16] W.-H. Hu, C. Moutinho, E. Caetano, F. Magalhães, A. Cunha, Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection, Mechanical Systems and Signal Processing, 33 (2012) 38-55.
[17] B.J. Costa, F. Magalhães, Á. Cunha, J. Figueiras, Rehabilitation assessment of a centenary steel bridge based on modal analysis, Engineering structures, 56 (2013) 260-272.
[18] B.J.A. Costa, F. Magalhães, Á. Cunha, J. Figueiras, Modal analysis for the rehabilitation assessment of the Luiz I Bridge, Journal of bridge engineering, 19(12) (2014) 05014006.
[19] Y. Lee, A.F. Vakakis, D. McFarland, L. Bergman, A global–local approach to nonlinear system identification: a review, Structural Control and Health Monitoring, 17(7) (2010) 742-760.
[20] J.M. Caicedo, J. Marulanda, Fast mode identification technique for online monitoring, Structural Control and Health Monitoring, 18(4) (2011) 416-429.
[21] F. Abazarsa, S. Ghahari, F. Nateghi, E. Taciroglu, Response‐only modal identification of structures using limited sensors, Structural Control and Health Monitoring, 20(6) (2013) 987-1006.
[22] A. Bayraktar, T. Türker, J. Tadla, A. Kurşun, A. Erdiş, Static and dynamic field load testing of the long span Nissibi cable-stayed bridge, Soil Dynamics and Earthquake Engineering, 94 (2017) 136-157.
[23] N. Maia, J. Silva, Modal analysis identification techniques, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1778) (2001) 29-40.
[24] R. Brincker, L. Zhang, P. Andersen, Modal identification of output-only systems using frequency domain decomposition, Smart materials and structures, 10(3) (2001) 441.
[25] L. Zhang, T. Wang, Y. Tamura, A frequency–spatial domain decomposition (FSDD) method for operational modal analysis, Mechanical systems and signal processing, 24(5) (2010) 1227-1239.
[26] S. Ibrahim, Random decrement technique for modal identification of structures, Journal of Spacecraft and Rockets, 14(11) (1977) 696-700.
[27] J.-N. Juang, R.S. Pappa, An eigensystem realization algorithm for modal parameter identification and model reduction, Journal of guidance, control, and dynamics, 8(5) (1985) 620-627.
[28] P.-E. Gautier, C. Gontier, M. Smail, Robustness of an ARMA identification method for modal analysis of mechanical systems in the presence of noise, Journal of Sound and Vibration, 179(2) (1995) 227-242.
[29] M. Döhler, X.-B. Lam, L. Mevel, Uncertainty quantification for modal parameters from stochastic subspace identification on multi-setup measurements, Mechanical Systems and Signal Processing, 36(2) (2013) 562-581.
[30] L. Faravelli, F. Ubertini, C. Fuggini, System identification of a super high-rise building via a stochastic subspace approach, Smart Structures and Systems, 7(2) (2011) 133-152.
[31] P.F. Pai, L. Huang, J. Hu, D.R. Langewisch, Time-frequency method for nonlinear system identification and damage detection, Structural Health Monitoring, 7(2) (2008) 103-127.
[32] K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE transactions on signal processing, 62(3) (2013) 531-544.
[33] Z. Hou, M. Noori, R.S. Amand, Wavelet-based approach for structural damage detection, Journal of Engineering mechanics, 126(7) (2000) 677-683.
[34] J.N. Yang, Y. Lei, S. Pan, N. Huang, System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes, Earthquake engineering & structural dynamics, 32(9) (2003) 1443-1467.
[35] N.E. Huang, M.L. Wu, W. Qu, S.R. Long, S.S. Shen, Applications of Hilbert–Huang transform to non‐stationary financial time series analysis, Applied stochastic models in business and industry, 19(3) (2003) 245-268.
[36] S. Nagarajaiah, Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short‐term Fourier transform, Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 16(7‐8) (2009) 800-841.
[37] T. Kijewski-Correa, A. Kareem, Efficacy of Hilbert and wavelet transforms for time-frequency analysis, Journal of engineering mechanics, 132(10) (2006) 1037-1049.
[38] H. Li, X. Deng, H. Dai, Structural damage detection using the combination method of EMD and wavelet analysis, Mechanical Systems and Signal Processing, 21(1) (2007) 298-306.
[39] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971) (1998) 903-995.
[40] X. Zhang, Z. Liu, Q. Miao, L. Wang, An optimized time varying filtering based empirical mode decomposition method with grey wolf optimizer for machinery fault diagnosis, Journal of Sound and Vibration, 418 (2018) 55-78.
[41] M. Lazhari, A. Sadhu, Decentralized modal identification of structures using an adaptive empirical mode decomposition method, Journal of Sound and Vibration, 447 (2019) 20-41.
[42] C.A. Perez-Ramirez, J.P. Amezquita-Sanchez, H. Adeli, M. Valtierra-Rodriguez, R.d.J. Romero-Troncoso, A. Dominguez-Gonzalez, R.A. Osornio-Rios, Time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals, Journal of Vibroengineering, 18(5) (2016) 3164-3185.
[43] S. Mahato, M.V. Teja, A. Chakraborty, Adaptive HHT (AHHT) based modal parameter estimation from limited measurements of an RC‐framed building under multi‐component earthquake excitations, Structural Control and Health Monitoring, 22(7) (2015) 984-1001.
[44] M. Barbosh, A. Sadhu, M. Vogrig, Multisensor‐based hybrid empirical mode decomposition method towards system identification of structures, Structural Control and Health Monitoring, 25(5) (2018) e2147.
[45] P. Ni, J. Li, H. Hao, Y. Xia, X. Wang, J.M. Lee, K.H. Jung, Time‐varying system identification using variational mode decomposition, Structural Control and Health Monitoring, 25(6) (2018) e2175.
[46] A. Bagheri, O.E. Ozbulut, D.K. Harris, Structural system identification based on variational mode decomposition, Journal of Sound and Vibration, 417 (2018) 182-197.
[47] Y. Tian, J. Zhang, Structural flexibility identification via moving-vehicle-induced time-varying modal parameters, Journal of Sound and Vibration, (2020) 115264.
[48] M. Zhang, F. Xu, Variational mode decomposition based modal parameter identification in civil engineering, Frontiers of Structural and Civil Engineering, 13(5) (2019) 1082-1094.
[49] J.J. Reilly, Load Testing Deteriorated Spans of the Hampton Roads Bridge-Tunnel for Load Rating Recommendations, Virginia Tech, 2017.