شناسایی اطلاعات مودال پل بتنی پیشتنیده با استفاده از تجزیه مود متغیر

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران.

چکیده

در این تحقیق، الگوریتم تجزیه مود متغیر برای شناسایی مشخصات مودال سازه با استفاده از تجزیه پاسخ‌های شتاب ثبت شده توسط سنسورها به کار برده شده است. این الگوریتم برتری‌هایی نسبت به سایر روش‌های تجزیه سیگنال دارد که در برابر نویز و فرکانس نمونه‌برداری مقاوم است. همچنین، الگوریتم تجزیه مود متغیر فرکانس‌های اصلی سازه را به طور همزمان استخراج می‌کند. علاوه بر این، نسبت‌های میرایی سازه با برازش دادن یک تابع خطی بر نمودار لگاریتمی پاسخ مودال در لحظه افت دامنه و محاسبه شیب این خط تخمین زده می‌شوند. کارایی و دقت این الگوریتم با تجزیه پاسخ‌های شتاب به دست آمده از سنسورهای نصب شده بر روی یک پل بتنی پیش­تنیده که تحت بار خودروهای عبوری قرار دارد، بررسی شد. برای پردازش سیگنال و تخمین فرکانس‌های اصلی، نسبت‌های میرایی و شکل مودهای ارتعاشی پل از الگوریتم تجزیه مود متغیر در نرم‌افزار متلب و به منظور صحت‌سنجی نتایج از نرم‌افزار آرتمیس استفاده شد. علاوه بر این، مدل‌سازی اجزا محدود و تحلیل مودال پل در نرم‌افزار آباکوس انجام شد و فرکانس‌های اصلی و شکل مودهای ارتعاشی پل به دست آمدند. بررسی نتایج نشان داد، شکل مودهای ارتعاشی که توسط الگوریتم تجزیه مود متغیر تخمین زده شدند، با مدل اجزا محدود و نرم‌افزار آرتمیس انطباق خوبی دارند. همچنین، نسبت‌های میرایی تخمین زده شده توسط این الگوریتم نزدیک به مقدار میرایی پل‌های بتنی پیش­تنیده به دست آمدند. اختلاف بین فرکانس‌های محاسبه شده توسط الگوریتم تجزیه مود متغیر و نرم‌افزار آرتمیس در حدود 1 درصد و اختلاف آن با فرکانس‌های مدل اجزا محدود نزدیک به 5 درصد می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modal Data Identification of the Prestressed Concrete Bridge Using Variational Mode Decomposition

نویسندگان [English]

  • payam dindar
  • mirhamid hosseini
  • mohammad reza mansoori
Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

In this study, the variational mode decomposition (VMD) algorithm was used to identify the modal characteristics of the structure using the decomposition of the acceleration responses recorded by the sensors. This algorithm has advantages over other signal decomposition methods that is resistant to the noise and sampling frequency. Also, the VMD algorithm extracts the natural frequencies of the structure concurrently. In addition, the damping ratios of the structure were estimated by fitting a linear function to the logarithmic diagram of the modal response in the decaying amplitude and calculating the slope of this line. The efficiency and accuracy of this algorithm were investigated by decomposing the acceleration responses obtained from the sensors installed on a prestressed concrete bridge (PSCB) that is located under the load of passing vehicles. The VMD algorithm was used for signal processing in MATLAB to estimate the natural frequencies, damping ratios and mode shapes of the bridge and ARTeMIS was utilized to verify the results. In addition, the finite element modeling and modal analysis of the bridge were performed in ABAQUS and the natural frequencies and mode shapes of the bridge were obtained. The results showed that the mode shapes estimated by the VMD algorithm were in good agreement with the finite element model and ARTeMIS. Also, the damping ratios estimated by this algorithm were obtained close to the damping value of the prestressed concrete bridge. The difference between the frequencies calculated by the VMD algorithm and ARTeMIS was about 1%, and the difference with the finite element model frequencies was close to 5%.

کلیدواژه‌ها [English]

  • Modal data identification
  • Variational mode decomposition
  • Signal processing
  • Ambient vibration
  • Prestressed concrete bridge
[1] H. Li, S. Li, J. Ou, H. Li, Modal identification of bridges under varying environmental conditions: temperature and wind effects, Structural Control and Health Monitoring, 17(5) (2010) 495-512.
[2] S.N. Pakzad, Development and deployment of large scale wireless sensor network on a long-span bridge, Smart Structures and Systems, 6(5-6) (2010) 525-543.
[3] Y. Ding, A. Li, D. Du, T. Liu, Multi-scale damage analysis for a steel box girder of a long-span cable-stayed bridge, Structure and Infrastructure Engineering, 6(6) (2010) 725-739.
[4] A. Gheitasi, O.E. Ozbulut, S. Usmani, M. Alipour, D.K. Harris, Experimental and analytical vibration serviceability assessment of an in-service footbridge, Case Studies in Nondestructive Testing and Evaluation, 6 (2016) 79-88.
[5] S.W. Doebling, C.R. Farrar, M.B. Prime, A summary review of vibration-based damage identification methods, Shock and vibration digest, 30(2) (1998) 91-105.
[6] F. Amini, Y. Hedayati, Underdetermined blind modal identification of structures by earthquake and ambient vibration measurements via sparse component analysis, Journal of Sound and Vibration, 366 (2016) 117-132.
[7] J. Brownjohn, F. Magalhaes, E. Caetano, A. Cunha, Ambient vibration re-testing and operational modal analysis of the Humber Bridge, Engineering Structures, 32(8) (2010) 2003-2018.
[8] A. Bagheri, M. Alipour, O.E. Ozbulut, D.K. Harris, Identification of Flexural Rigidity in Bridges with Limited Structural Information, Journal of Structural Engineering, 144(8) (2018) 04018126.
[9] A. Bagheri, M. Alipour, S. Usmani, O.E. Ozbulut, D.K. Harris, Structural stiffness identification of skewed slab bridges with limited information for load rating purpose, Dynamics of Civil Structures, Volume 2,  (2017) 243-249.
[10] Y. Tian, J. Zhang, Q. Xia, P. Li, Flexibility identification and deflection prediction of a three-span concrete box girder bridge using impacting test data, Engineering Structures, 146 (2017) 158-169.
[11] K.-C. Chang, C.-W. Kim, Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge, Engineering Structures, 122 (2016) 156-173.
[12] L.S. Hogan, L. Wotherspoon, S. Beskhyroun, J. Ingham, Dynamic field testing of a three-span precast-concrete bridge, Journal of Bridge Engineering, 21(12) (2016) 06016007.
[13] A. Bagheri, O.E. Ozbulut, D.K. Harris, M. Alipour, A. Zare Hosseinzadeh, A hybrid experimental-numerical approach for load rating of reinforced concrete bridges with insufficient structural properties, Structure and Infrastructure Engineering, 15(6) (2019) 754-770.
[14] A.K. Ndong, M.S. Dizaji, M. Alipour, O.E. Ozbulut, D.K. Harris, Load Rating of a Reinforced Concrete T-beam Bridge through Ambient Vibration Testing and Finite Element Model Updating, Dynamics of Civil Structures, Volume 2,  (2019) 337-343.
[15] A. Bagheri, M. Alipour, O.E. Ozbulut, D.K. Harris, A nondestructive method for load rating of bridges without structural properties and plans, Engineering Structures, 171 (2018) 545-556.
[16] W.-H. Hu, C. Moutinho, E. Caetano, F. Magalhães, A. Cunha, Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection, Mechanical Systems and Signal Processing, 33 (2012) 38-55.
[17] B.J. Costa, F. Magalhães, Á. Cunha, J. Figueiras, Rehabilitation assessment of a centenary steel bridge based on modal analysis, Engineering structures, 56 (2013) 260-272.
[18] B.J.A. Costa, F. Magalhães, Á. Cunha, J. Figueiras, Modal analysis for the rehabilitation assessment of the Luiz I Bridge, Journal of bridge engineering, 19(12) (2014) 05014006.
[19] Y. Lee, A.F. Vakakis, D. McFarland, L. Bergman, A global–local approach to nonlinear system identification: a review, Structural Control and Health Monitoring, 17(7) (2010) 742-760.
[20] J.M. Caicedo, J. Marulanda, Fast mode identification technique for online monitoring, Structural Control and Health Monitoring, 18(4) (2011) 416-429.
[21] F. Abazarsa, S. Ghahari, F. Nateghi, E. Taciroglu, Response‐only modal identification of structures using limited sensors, Structural Control and Health Monitoring, 20(6) (2013) 987-1006.
[22] A. Bayraktar, T. Türker, J. Tadla, A. Kurşun, A. Erdiş, Static and dynamic field load testing of the long span Nissibi cable-stayed bridge, Soil Dynamics and Earthquake Engineering, 94 (2017) 136-157.
[23] N. Maia, J. Silva, Modal analysis identification techniques, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1778) (2001) 29-40.
[24] R. Brincker, L. Zhang, P. Andersen, Modal identification of output-only systems using frequency domain decomposition, Smart materials and structures, 10(3) (2001) 441.
[25] L. Zhang, T. Wang, Y. Tamura, A frequency–spatial domain decomposition (FSDD) method for operational modal analysis, Mechanical systems and signal processing, 24(5) (2010) 1227-1239.
[26] S. Ibrahim, Random decrement technique for modal identification of structures, Journal of Spacecraft and Rockets, 14(11) (1977) 696-700.
[27] J.-N. Juang, R.S. Pappa, An eigensystem realization algorithm for modal parameter identification and model reduction, Journal of guidance, control, and dynamics, 8(5) (1985) 620-627.
[28] P.-E. Gautier, C. Gontier, M. Smail, Robustness of an ARMA identification method for modal analysis of mechanical systems in the presence of noise, Journal of Sound and Vibration, 179(2) (1995) 227-242.
[29] M. Döhler, X.-B. Lam, L. Mevel, Uncertainty quantification for modal parameters from stochastic subspace identification on multi-setup measurements, Mechanical Systems and Signal Processing, 36(2) (2013) 562-581.
[30] L. Faravelli, F. Ubertini, C. Fuggini, System identification of a super high-rise building via a stochastic subspace approach, Smart Structures and Systems, 7(2) (2011) 133-152.
[31] P.F. Pai, L. Huang, J. Hu, D.R. Langewisch, Time-frequency method for nonlinear system identification and damage detection, Structural Health Monitoring, 7(2) (2008) 103-127.
[32] K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE transactions on signal processing, 62(3) (2013) 531-544.
[33] Z. Hou, M. Noori, R.S. Amand, Wavelet-based approach for structural damage detection, Journal of Engineering mechanics, 126(7) (2000) 677-683.
[34] J.N. Yang, Y. Lei, S. Pan, N. Huang, System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes, Earthquake engineering & structural dynamics, 32(9) (2003) 1443-1467.
[35] N.E. Huang, M.L. Wu, W. Qu, S.R. Long, S.S. Shen, Applications of Hilbert–Huang transform to non‐stationary financial time series analysis, Applied stochastic models in business and industry, 19(3) (2003) 245-268.
[36] S. Nagarajaiah, Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short‐term Fourier transform, Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 16(7‐8) (2009) 800-841.
[37] T. Kijewski-Correa, A. Kareem, Efficacy of Hilbert and wavelet transforms for time-frequency analysis, Journal of engineering mechanics, 132(10) (2006) 1037-1049.
[38] H. Li, X. Deng, H. Dai, Structural damage detection using the combination method of EMD and wavelet analysis, Mechanical Systems and Signal Processing, 21(1) (2007) 298-306.
[39] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971) (1998) 903-995.
[40] X. Zhang, Z. Liu, Q. Miao, L. Wang, An optimized time varying filtering based empirical mode decomposition method with grey wolf optimizer for machinery fault diagnosis, Journal of Sound and Vibration, 418 (2018) 55-78.
[41] M. Lazhari, A. Sadhu, Decentralized modal identification of structures using an adaptive empirical mode decomposition method, Journal of Sound and Vibration, 447 (2019) 20-41.
[42] C.A. Perez-Ramirez, J.P. Amezquita-Sanchez, H. Adeli, M. Valtierra-Rodriguez, R.d.J. Romero-Troncoso, A. Dominguez-Gonzalez, R.A. Osornio-Rios, Time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals, Journal of Vibroengineering, 18(5) (2016) 3164-3185.
[43] S. Mahato, M.V. Teja, A. Chakraborty, Adaptive HHT (AHHT) based modal parameter estimation from limited measurements of an RC‐framed building under multi‐component earthquake excitations, Structural Control and Health Monitoring, 22(7) (2015) 984-1001.
[44] M. Barbosh, A. Sadhu, M. Vogrig, Multisensor‐based hybrid empirical mode decomposition method towards system identification of structures, Structural Control and Health Monitoring, 25(5) (2018) e2147.
[45] P. Ni, J. Li, H. Hao, Y. Xia, X. Wang, J.M. Lee, K.H. Jung, Time‐varying system identification using variational mode decomposition, Structural Control and Health Monitoring, 25(6) (2018) e2175.
[46] A. Bagheri, O.E. Ozbulut, D.K. Harris, Structural system identification based on variational mode decomposition, Journal of Sound and Vibration, 417 (2018) 182-197.
[47] Y. Tian, J. Zhang, Structural flexibility identification via moving-vehicle-induced time-varying modal parameters, Journal of Sound and Vibration,  (2020) 115264.
[48] M. Zhang, F. Xu, Variational mode decomposition based modal parameter identification in civil engineering, Frontiers of Structural and Civil Engineering, 13(5) (2019) 1082-1094.
[49] J.J. Reilly, Load Testing Deteriorated Spans of the Hampton Roads Bridge-Tunnel for Load Rating Recommendations, Virginia Tech, 2017.