[1] M. Cubrinovski, D. Henderson, B. Bradley, Liquefaction impacts in residential areas in the 2010-2011 Christchurch earthquakes, (2012).
[2] R.A. Green, J. Allen, L. Wotherspoon, M. Cubrinovski, B. Bradley, A. Bradshaw, B. Cox, T. Algie, Performance of Levees (Stopbanks) during the 4 september 2010 Mw 7.1 Darfield and 22 February 2011 Mw 6.2 Christchurch, New Zealand, Earthquakes, Seismological Research Letters, 82(6) (2011) 939-949.
[3] D. Huang, G. Wang, F. Jin, Effectiveness of pile reinforcement in liquefied ground, Journal of Earthquake Engineering, 24(8) (2020) 1222-1244.
[4] A. Asgari, M. Oliaei, M. Bagheri, Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques, Soil Dynamics and Earthquake Engineering, 51 (2013) 77-96.
[5] S.M. Haeri, A. Kavand, I. Rahmani, H. Torabi, Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing, Soil Dynamics and Earthquake Engineering, 38 (2012) 25-45.
[6] A. Elgamal, J. Lu, D. Forcellini, Mitigation of liquefaction-induced lateral deformation in a sloping stratum: Three-dimensional numerical simulation, Journal of geotechnical and geoenvironmental engineering, 135(11) (2009) 1672-1682.
[7] H. Toyota, I. Towhata, S.-I. Imamura, K.-I. Kudo, Shaking table tests on flow dynamics in liquefied slope, Soils and foundations, 44(5) (2004) 67-84.
[8] T. Abdoun, R. Dobry, T.D. O’Rourke, S. Goh, Pile response to lateral spreads: centrifuge modeling, Journal of Geotechnical and Geoenvironmental engineering, 129(10) (2003) 869-878.
[9] K. Tokimatsu, H. Kojima, S. Kuwayama, A. Abe, S. Midorikawa, Liquefaction-induced damage to buildings in 1990 Luzon earthquake, Journal of Geotechnical Engineering, 120(2) (1994) 290-307.
[10] R. Sancio, J.D. Bray, T. Durgunoglu, A. Onalp, Performance of buildings over liquefiable ground in Adapazari, Turkey, in: Proc., 13th World Conf. on Earthquake Engineering, Canadian Association for Earthquake Engineering Vancouver, Canada, 2004.
[11] S.A. Ashford, R.W. Boulanger, J.L. Donahue, J.P. Stewart, Geotechnical quick report on the Kanto Plain region during the March 11, 2011, Off Pacific Coast of Tohoku earthquake, Japan, GEER Association Report No GEER-025a, Geotechnical Extreme Events Reconnaissance (GEER), (2011).
[12] B. Mehrzad, Y. Jafarian, C. Lee, A. Haddad, Centrifuge study into the effect of liquefaction extent on permanent settlement and seismic response of shallow foundations, Soils and foundations, 58(1) (2018) 228-240.
[13] M. Jahed Orang, R. Motamed, A. Prabhakaran, A. Elgamal, Large-Scale Shake Table Tests on a Shallow Foundation in Liquefiable Soils, Journal of Geotechnical and Geoenvironmental Engineering, 147(1) (2021) 04020152.
[14] S. Dashti, J.D. Bray, J.M. Pestana, M. Riemer, D. Wilson, Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil, Journal of geotechnical and geoenvironmental engineering, 136(1) (2010) 151-164.
[15] S. Dashti, J.D. Bray, J.M. Pestana, M. Riemer, D. Wilson, Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms, Journal of geotechnical and geoenvironmental engineering, 136(7) (2010) 918-929.
[16] Y. Tsukamoto, K. Ishihara, S. Sawada, S. Fujiwara, Settlement of rigid circular foundations during seismic shaking in shaking table tests, International Journal of Geomechanics, 12(4) (2012) 462-470.
[17] F. Lopez-Caballero, A.M. Farahmand-Razavi, Numerical simulation of liquefaction effects on seismic SSI, Soil Dynamics and Earthquake Engineering, 28(2) (2008) 85-98.
[18] D.K. Karamitros, G.D. Bouckovalas, Y.K. Chaloulos, Insight into the seismic liquefaction performance of shallow foundations, Journal of Geotechnical and Geoenvironmental Engineering, 139(4) (2013) 599-607.
[19] J. Macedo, J.D. Bray, Key trends in liquefaction-induced building settlement, Journal of Geotechnical and Geoenvironmental Engineering, 144(11) (2018) 04018076.
[20] A. Asgari, A. Golshani, M. Bagheri, Numerical evaluation of seismic response of shallow foundation on loose silt and silty sand, Journal of Earth System Science, 123(2) (2014) 365-379.
[21] G. Zheng, W. Zhang, H. Zhou, P. Yang, Multivariate adaptive regression splines model for prediction of the liquefaction-induced settlement of shallow foundations, Soil Dynamics and Earthquake Engineering, 132 (2020) 106097.
[22] Z. Karimi, S. Dashti, Z. Bullock, K. Porter, A. Liel, Key predictors of structure settlement on liquefiable ground: a numerical parametric study, Soil Dynamics and Earthquake Engineering, 113 (2018) 286-308.
[23] Z. Karimi, S. Dashti, Seismic performance of shallow founded structures on liquefiable ground: validation of numerical simulations using centrifuge experiments, Journal of Geotechnical and Geoenvironmental Engineering, 142(6) (2016) 04016011.
[24] S. Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves, OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center, 264 (2006).
[25] B. Jeremic, Development of geotechnical capabilities in OpenSees, Citeseer, 2001.
[26] J.H. Prevost, A simple plasticity theory for frictional cohesionless soils, International Journal of Soil Dynamics and Earthquake Engineering, 4(1) (1985) 9-17.
[27] Z. Mroz, On the description of anisotropic workhardening, Journal of the Mechanics and Physics of Solids, 15(3) (1967) 163-175.
[28] A. Elgamal, Z. Yang, E. Parra, A. Ragheb, Modeling of cyclic mobility in saturated cohesionless soils, International Journal of Plasticity, 19(6) (2003) 883-905.
[29] K. Ishihara, Stability of Natural Deposits During Earthquakes.Proceedings of The Eleventh international Conference on soil Mechanics and Foundation Engineering,Sanfrancisco,12-16 August 1985, Publication of: Balkema (AA), (1985).
[30] M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, Journal of applied physics, 33(4) (1962) 1482-1498.
[31] A.H.-C. Chan, A unified finite element solution to static and dynamic problems of geomechanics, Swansea University, 1988.
[32] O.C. Zienkiewicz, A. Chan, M. Pastor, D. Paul, T. Shiomi, Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 429(1877) (1990) 285-309.
[33] A. Elgamal, Z. Yang, E. Parra, Computational modeling of cyclic mobility and post-liquefaction site response, Soil Dynamics and Earthquake Engineering, 22(4) (2002) 259-271.
[34] Z. Yang, A. Elgamal, K. Adalier, M.K. Sharp, Earth dam on liquefiable foundation and remediation: numerical simulation of centrifuge experiments, Journal of engineering mechanics, 130(10) (2004) 1168-1176.
[35] Z. Yang, J. Lu, A. Elgamal, OpenSees soil models and solid-fluid fully coupled elements user’s manual, (2008).
[36] Z. Karimi, S. Dashti, Numerical and centrifuge modeling of seismic soil–foundation–structure interaction on liquefiable ground, Journal of Geotechnical and Geoenvironmental Engineering, 142(1) (2016) 04015061.
[37] L. He, J. Ramirez, J. Lu, L. Tang, A. Elgamal, K. Tokimatsu, Lateral spreading near deep foundations and influence of soil permeability, Canadian Geotechnical Journal, 54(6) (2017) 846-861.
[38] R. Ribó, M. Pasenau, E. Escolano, J. Ronda, L. González, GiD reference manual, CIMNE, Barcelona, 27 (1998).