کنترل غیرفعال و نیمه‌فعال ارتعاشات سازه جداسازی شده تحت بارگذاری انفجار در فواصل متوسط تا دور

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

چکیده

با پیشرفت روزافزون تسلیحات نظامی و تنوع مواد منفجره در کشورهای دنیا، حملات تروریستی یک تهدید رو به افزایش محسوب می‌شود. علم کنترل ارتعاشات در برابر بارهای طبیعی به ‌خوبی توسعه یافته است. گرچه بار انفجار دارای ماهیت متفاوتی نسبت به بارهای طبیعی است، اما از این علم می‌توان برای کاهش پاسخ‌های بارهای انفجاری نیز بهره برد. برای این منظور از دو روش غیرفعال و نیمه‌فعال که شامل میراگر جرمی تنظیم شده و میراگر مغناطیسی است، به ‌منظور کاهش ارتعاشات ناشی از بار انفجار در سازه جداسازی شده استفاده شده است. در این مطالعه از سیستم فازی نوع-2 برای تعیین ولتاژ مناسب میراگر مغناطیسی استفاده شده است تا عدم قطعیت‌های موجود باعث تأثیر سوء بر عملکرد آن نگردد. شبیه‌سازی عددی دو بار انفجار در فاصله 15 متری از یک سازه 5 درجه آزادی، توسط روابط تجربی و عددی انجام شد. استفاده از ابزارهای کنترل پیشنهادی در کنار سیستم جداساز نشان داد که این روش‌ها می‌تواند علاوه بر حفظ عملکرد مناسب جداساز، در تحریک‌های بزرگ‌تر، جابجایی‌ها و آسیب‌های احتمالی جداساز را محدود کنند. نتایج مقایسه نشان داد که استفاده از میراگر مغناطیسی در کنار جداساز می‌تواند بهترین عملکرد را در برابر بارهای انفجار و بارهای لرزه‌ای داشته باشد. استفاده از این سیستم به ‌طور میانگین موجب کاهش حداکثر تغییر مکان نسبی طبقات تا حدود 36% در بارهای انفجار، 68% در بارهای لرزه‌ای حوزه دور و 46% در بارهای لرزه‌ای حوزه نزدیک گردید در حالی ‌که جابجایی نسبی جداساز به ‌طور قابل ملاحظه‌ای نسبت به سیستم جداساز به همراه میراگر جرمی تنظیم شده محدود شده بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Passive and semi-active vibration control of base-isolated structure under blast loading at medium to long distances

نویسندگان [English]

  • Meysam Ramezani
  • Mohamad Saleh Labafzadeh
International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
چکیده [English]

With the increasing development of military weapons around the world and the variety of explosives, terrorist attacks are growing threats. The vibration control technology is well developed against natural loads. Although blast loads are different than natural loads, this technology can also be used to reduce explosive load responses. For this purpose, passive and semi-active methods, including tuned mass damper (TMD) and magnetorheological (MR) damper, have been used to reduce the vibrations caused by the blast load in the base-isolated structure. In this study, a type-2 fuzzy system has been used to determine the appropriate voltage of the MR damper so that the existing uncertainties do not adversely affect its performance. The numerical simulation of two explosives at 15m from 5 degrees of freedom system, has been performed through theoretical and empirical equations. The use of the proposed control tools along with the base isolation system showed that not only can these methods maintain the proper performance of the base isolated system but limit the displacement and possible damages at larger excitations. The comparative results show that the use of MR damper along with the base isolation system can have the best performance against blast and seismic loads. The use of this system, on average reduces the maximum drift of the stories to about 36% in blast loads, 68% in far-field earthquakes and 46% in near-field earthquakes. Furthermore, the drift of the isolation bearing is significantly limited compared to the base-isolated system with TMD.

کلیدواژه‌ها [English]

  • Blast loading
  • Magnetorheological damper
  • Type-2 fuzzy control algorithm
  • Tuned mass damper
  • Base isolation
[1] N.R. Council, ISC security design criteria for new federal office buildings and major modernization projects: A review and commentary, National Academies Press, 2003.
[2] H. Draganić, V. Sigmund, Blast loading on structures, Technical Gazette, 19(3) (2012) 643-652.
[3] K.G.G. KJ, Explosive shocks in air, in, Springer-Verlag, New York, 1985.
[4] F. Beshara, Modelling of blast loading on aboveground structures—I. General phenomenology and external blast, Computers & Structures, 51(5) (1994) 585-596.
[5] R. Codina, D. Ambrosini, F. de Borbón, New sacrificial cladding system for the reduction of blast damage in reinforced concrete structures, International Journal of Protective Structures, 8(2) (2017) 221-236.
[6] S.P. Santosa, F. Arifurrahman, M.H. Izzudin, D. Widagdo, L. Gunawan, Response Analysis of Blast Impact Loading of Metal-foam Sandwich Panels, Procedia engineering, 173 (2017) 495-502.
[7] R. Zhang, B.M. Phillips, Performance and protection of base-isolated structures under blast loading, Journal of Engineering Mechanics, 142(1) (2016) 04015063.
[8] ع. میرزا گلتبار روشن, ع. ناصری, ج. نصیری لاریمی, بررسی اثر میراگرهای جدارنازک آکاردئونی در کاهش پاسخ قاب‌ها تحت بار انفجاری, نشریه مهندسی عمران امیرکبیر, 49(4) (2018) 707-722.
[9] M.Z. Kangda, S. Bakre, Positive-phase blast effects on base-isolated structures, Arabian Journal for Science and Engineering, 44(5) (2019) 4971-4992.
[10] H. Frahm, Device for damping vibrations of bodies, in, Google Patents, 1911.
[11] M. Ramezani, A. Bathaei, A.K. Ghorbani-Tanha, Application of artificial neural networks in optimal tuning of tuned mass dampers implemented in high-rise buildings subjected to wind load, Earthquake Engineering and Engineering Vibration, 17(4) (2018) 903-915.
[12] M. Ramezani, A. Bathaei, S.M. Zahrai, Comparing fuzzy type-1 and-2 in semi-active control with TMD considering uncertainties,  (2019).
[13] M. Ramezani, A. Bathaei, S.M. Zahrai, Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings, Smart Structures and Systems, 20(1) (2017) 61-74.
[14] S. Salari, S.J. Hormozabad, A.K. Ghorbani-Tanha, M. Rahimian, Innovative Mobile TMD system for semi-active vibration control of inclined sagged cables, KSCE Journal of Civil Engineering, 23(2) (2019) 641-653.
[15] S.J. Hormozabad, M.G. Soto, Load balancing and neural dynamic model to optimize replicator dynamics controllers for vibration reduction of highway bridge structures, Engineering Applications of Artificial Intelligence, 99 (2021) 104138.
[16] S.J. Hormozabad, M.G. Soto, Optimal Replicator Dynamic Controller via Load Balancing and Neural Dynamics for Semi-Active Vibration Control of Isolated Highway Bridge Structures, in:  Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, Volume 7, Springer, 2021, pp. 241-244.
[17] M. Mohebbi, H. Dadkhah, Performance of semi-active base isolation systems under external explosion, International Journal of Structural Stability and Dynamics, 17(10) (2017) 1750112.
[18] A. Celikyilmaz, I.B. Turksen, Modeling uncertainty with fuzzy logic, Studies in fuzziness and soft computing, 240 (2009) 149-215.
[19] R.-E. Precup, H. Hellendoorn, A survey on industrial applications of fuzzy control, Computers in industry, 62(3) (2011) 213-226.
[20] M. Prasad, C.-T. Lin, D.-L. Li, C.-T. Hong, W.-P. Ding, J.-Y. Chang, Soft-boosted self-constructing neural fuzzy inference network, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(3) (2015) 584-588.
[21] A. Sarabakha, N. Imanberdiyev, E. Kayacan, M.A. Khanesar, H. Hagras, Novel Levenberg–Marquardt based learning algorithm for unmanned aerial vehicles, Information Sciences, 417 (2017) 361-380.
[22] S.J. Hormozabad, A.K. Ghorbani-Tanha, Semi-active fuzzy control of Lali Cable-Stayed Bridge using MR dampers under seismic excitation, Frontiers of Structural and Civil Engineering, 14(3) (2020) 706-721.
[23] P. Melin, O. Castillo, A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition, Applied soft computing, 21 (2014) 568-577.
[24] E. Ontiveros, P. Melin, O. Castillo, High order α-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems, Engineering Applications of Artificial Intelligence, 74 (2018) 186-197.
[25] E. Ontiveros-Robles, P. Melin, O. Castillo, Comparative analysis of noise robustness of type 2 fuzzy logic controllers, Kybernetika, 54(1) (2018) 175-201.
[26] A.K. Ravandi, E. Khanmirza, K. Daneshjou, Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control, Applied Soft Computing, 70 (2018) 864-874.
[27] E. Kayacan, A. Sarabakha, S. Coupland, R. John, M.A. Khanesar, Type-2 fuzzy elliptic membership functions for modeling uncertainty, Engineering Applications of Artificial Intelligence, 70 (2018) 170-183.
[28] M.A. Khanesar, E. Kayacan, M. Teshnehlab, O. Kaynak, Analysis of the noise reduction property of type-2 fuzzy logic systems using a novel type-2 membership function, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(5) (2011) 1395-1406.
[29] A. Bathaei, S.M. Zahrai, M. Ramezani, Semi-active seismic control of an 11-DOF building model with TMD+ MR damper using type-1 and-2 fuzzy algorithms, Journal of Vibration and Control, 24(13) (2018) 2938-2953.
[30] Unified Facilities Criteria (UFC), Structures to Resist the  Effects of Accidental Explosions, U. S. Army Corps of  Engineers, Naval Facilities Engineering Command, Air Force Civil Engineer Support Agency, UFC 3-340-02, 5 December 2008.
[31] H.L. Brode, Numerical solutions of spherical blast waves, Journal of Applied physics, 26(6) (1955) 766-775.
[32] N. Lam, P. Mendis, T. Ngo, Response spectrum solutions for blast loading, Electronic Journal of Structural Engineering, 4(4) (2004) 28-44.
[33] C. Mills, The design of concrete structures to resist explosions and weapon effects,  (1988).
[34] N. Newmark, R. Hansen, Design of blast resistant structures, Shock and vibration handbook, 3 (1961).
[35] P. Smith, J. Hetherington, Blast and ballistic loading of structures. Laxtons, in, Oxford, 1994.
[36] W.E. Baker, Explosions in air, University of Texas press, 1973.
[37] W.J.M. Rankine, XV. On the thermodynamic theory of waves of finite longitudinal disturbance, Philosophical Transactions of the Royal Society of London, (160) (1870) 277-288.
[38] P.S. Bulson, Explosive loading of engineering structures, CRC Press, London, 2002.
[39] S.B. Hodder, A STUDY OF ENERGY ABSORBING ASEISMIC BASE ISOLATION SYSTEMS,  (1983).
[40] R.I. Skinner, W.H. Robinson, G.H. McVerry, An introduction to seismic isolation, John Wiley & Sons, 1993.
[41] E.A. Johnson, J.C. Ramallo, B.F. Spencer Jr, M.K. Sain, Intelligent base isolation systems, in:  Proceedings of the Second World Conference on Structural Control, 1998, pp. 367-376.
[42] J. Kelly, G. Leitmann, A. Soldatos, Robust control of base-isolated structures under earthquake excitation, Journal of Optimization Theory and Applications, 53(2) (1987) 159-180.
[43] J.M. Kelly, H.C. Tsai, Seismic response of light internal equipment in base‐isolated structures, Earthquake Engineering & Structural Dynamics, 13(6) (1985) 711-732.
[44] S. Bakre, R. Jangid, Optimum parameters of tuned mass damper for damped main system, Structural Control and Health Monitoring: the Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 14(3) (2007) 448-470.
[45] A. Leung, H. Zhang, Particle swarm optimization of tuned mass dampers, Engineering Structures, 31(3) (2009) 715-728.
[46] T. Taniguchi, A. Der Kiureghian, M. Melkumyan, Effect of tuned mass damper on displacement demand of base-isolated structures, Engineering Structures, 30(12) (2008) 3478-3488.
[47] S.-Y. Ok, D.-S. Kim, K.-S. Park, H.-M. Koh, Semi-active fuzzy control of cable-stayed bridges using magneto-rheological dampers, Engineering structures, 29(5) (2007) 776-788.
[48] P. Harvey Jr, H. Gavin, J. Scruggs, J. Rinker, Determining the physical limits on semi‐active control performance: a tutorial, Structural Control and Health Monitoring, 21(5) (2014) 803-816.