ریزمدل پیوسته سه‌بعدی بر مبنای مفهوم چندصفحه‌ای جهت تحلیل رفتار غیرخطی پانل بنایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1- دانشجوی دکتری سازه، دانشکدة فنی و مهندسی،گروه مهندسی عمران ، دانشگاه رازی، کرمانشاه،ایران

2 دانشیار، گروه مهندسی عمران، دانشکده فنی، دانشگاه رازی، کرمانشاه، ایران

چکیده

در این مقاله یک ریزمدل پیوسته سه بعدی جهت پیش­بینی رفتار بنایی غیرمسلح ارائه می­‌گردد. این مدل بر مبنای مفهوم ریزصفحه (چندصفحه) است و برای مدل‌سازی شکست در سازه بنایی توسعه می­‌یابد. با توجه به عدم وجود یک مدل سه بعدی قوی و در عین حال کاربردی در این زمینه، هدف اصلی از کار حاضر ارائه یک مدل ساختاری بر مبنای تعداد پارامترهای حداقلی آزمایشگاهی است که به آسانی محاسبه شده (c و φ) و قادر به بازتولید رفتار سه بعدی مصالح شبه‌ِترد (مانند بناییِ آجری) است. در ریزمدل پیوسته سه بعدی، مصالح بنایی (آجر و ملات)، با المان‌های محیط پیوسته مدل می­شوند و با توجه به عدم استفاده از المان­‌های درز مجزا، پیش پردازش (گسسته‌سازی)، تحلیل و پردازش نتایج، بسیار ساده‌­تر انجام خواهد شد. سطح تسلیم استفاده شده در این مدل شامل سطح تسلیم تعمیم یافته مور - کلمب دوبعدی همراه با یک قطع‌کننده کششی است. این سطح تسلیم ساده دوبعدی در چارچوب مفهوم چندصفحه‌ای، قادر به بازتولید رفتار سه بعدی مصالحِ ترد است و ویژگی­هایی مانند وابستگی مقاومت به محصورشدگی، اتساع و کنترل اتساع با محصورشدگی، ناهمسانی (ذاتی و تحمیلی در نتیجه تشکیل ترک)، سخت­‌شوندگی و نرم‌­شوندگی در مراحل مختلف (رفتار قبل و پس از نقطه اوج)، را لحاظ می‌­کند. جهت نمایش تواناییِ این مدل، دو ریزآزمایش (آزمایش کشش مستقیم نمونه بتنی و برش مستقیم دو آجره) و یک پانل­ بناییِ (آزمایش پیج) تحت بارگذاری­ کشش تک‌محوری با زوایای مختلف نسبت به درز ملات، انتخاب شده است. مقایسه نمودار بار-تغییرمکان و مودهای گسیختگی حاصل از شبیه‌سازی به وسیله مدل حاضر، با داده‌­های آزمایشگاهی و سایر مدل‌­های عددی ارائه شده در منابع معتبر، عملکرد مدل را تأیید می‌­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

3D Continuous Micro-Model Based on Multi-laminate Concept for the Nonlinear Numerical Analysis of Masonry Panels

نویسندگان [English]

  • hamid tavanaeifar 1
  • Amir Hoshang Akhaveissy 2
1 Ph.D Student, Department of Civil Engineering, Engineering Faculty, Razi University, Kermanshah, Iran
2 Associate Professor, Department of Civil Engineering, Engineering Faculty, Razi University, Kermanshah, Iran
چکیده [English]

This paper presents a continuous micro model for the prediction of the behavior of a masonry structure. A model based on multi-laminate theory is developed to model the fracture in unreinforced masonry. The main purpose of this paper is to develop a constitutive model for practical applications which has few and easily measurable parameters and is capable of reproducing advanced features of the behavior of masonry brickworks such as cohesive-frictional response (strength dependence on confinement), dilatancy, and dilatancy control with confinement, anisotropy (inherent and induced which is caused by cracking formation), hardening-softening and different levels of brittle behaviors. The yield surface used in this model consists of a generalized Mohr-Coulomb yield surface together with a cut-off tensile. This can address both pre and post-peak behaviors. The capability of this model is confirmed for simulating the masonry behavior under lateral loading by comparing the numerical simulation results with experimental data in the literature.

کلیدواژه‌ها [English]

  • micro modeling
  • Micro-plane model
  • multi-laminate model
  • induced anisotropy
  • Softening behavior
  1. H. Akhaveissy, Finite element nonlinear analysis of high-rise unreinforced masonry building, Latin Am J Solids Struct, 9 (2012) 547–567.
  2. Y. Chen, F.L. Moon, T. Yi, A macroelement for the nonlinear analysis of in-plane unreinforced masonry piers, Eng Struct 30(8) (2008) 2242–2252.
  3. Salonikios , C. Karakostas , V. Lekidis , A. Anthoine, Comparative inelastic pushover analysis of masonry frames, Engineering Structures 25 (2003) 1515–1523.
  4. Anthoine, Derivation of the in-plane elastic characteristics of masonry through homogenization theory, International Journal of Solids and Structures 32(2) (1995) 137–163.
  5. Anthoine, A Homogenisation of periodic masonry: Plane stress, generalised plane strain or 3D modelling? , Comm. Num. Meth. Engrg 13 (1997) 319-326.
  6. B. Lourenço, J.G. Rots, J. Blaauwendraad, Continuum model for masonry: Parameter estimation and validation, Journal of Structural Engineering, ASCE 124(6) (1998) 642-652.
  7. H. Akhaveissy, C.S. Desai, Unreinforced Masonry Walls: Nonlinear Finite Element Analysis with a Unified Constitutive Model, Arch Comput Methods Eng, 18 (2011) 485-502.
  8. H. Akhaveissy, G. Milani, Pushover analysis of large scale unreinforced masonry structures by means of a fully 2D non-linear model, Construction and Building Materials, 41 (2013) 276-295.
  9. H. akhaveissy, H. Tavanaeifar, In-plane Failure Analysis of URM Structures Based on Strain Hardening and Softening in the Multilaminate Framework, Computational Methods in Engineering Isfahan University of Technology (IUT), 33,2 (2016) 51-71.

10.Gambarotta, S. Lagomarsino, Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its applications, Earthquake Engineering and Structure Dynamics, 26 (1997) 423–439.

11.M. D’Altri, S. de Miranda, G. Castellazzi, V.A. Sarhosis, 3D detailed micro-model for the in-plane and out-of-plane numerical analysis of masonry panels, Computers and Structures, 206 (2018) 18-30.

12.B. Lourenço, J. Rots, Multisurface interface model for analysis of masonry structures, J Eng Mech 123,7 (1997) 660-668.

13.B. Lourenco, Computational strategies for Masonry structures, thesis, The Netherlands: Delft University of Technology, 1996.

14.V. Oliveira, P.B. Lourenco, Implementation and validation of a constitutive model for the cyclic behaviour of interface elements, Computers and Structures, 82 (2004) 1451–1461.

15.H. Akhaveissy, Lateral strength force of URM structures based on a constitutive model for interface element, Latin Am J Solids Struct, 8 (2011) 445 – 461.

16.Greco, L. Leonetti, R. Luciano, A. Pascuzzo, C. Ronchei, A detailed micro-model for brick masonry structures based on a diffuse cohesive-frictional interface fracture approach, in: Procedia Structural Integrity , 1st Virtual Conference on Structural Integrity - VCSI1, 2020, pp. 334-347.

17.Petracca, L. Pelà, R. Rossi, S. Zaghi, G. Camata, E. Spacone, Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls, Constr Build Mater, 149 (2017) 296–314.

18.Sarhosis, J.V. Lemos, detailed micro-modelling approach for the structural analysis of masonry assemblages, Comput Struct, 206 (2018) 66-81.

19.A. Andam, Numerical Evaluation of shear strength of structural masonry assemblages, Butterworth & Co, (publishers) Ltd, 19(7) (1987) 355-360.

20.W. El-Dakhakhni, R.G. Drysdale, M.M. Khattab, Multi-laminate Macromodel for Concrete Masonry: Formulation and Verification, J. Struct.Eng., 132(12) (2006) 1984-1996.

21.C. Zienkiewicz, G.N. Pande, Time-dependent multi-laminate model of rocks - A numerical study of deformation and failure of rock masses, Int. J. Numer. Anal. Meth. Geomech, 1(3) (1997) 219-247.

22.Bazant, CP. Prat, Microplane model for quasi brittleplastic material — Part I Theory, J Eng Mech ASCE, 114 (1988) 1672-1688.

23.Borino, G. Cottone, F. Parrinello, A microplane model for plane-stress masonry structures, Computational Fluid and Solid Mechanics, 1 (2003) 115-117.

24.I. Taylor, Plastic strain in metals. Journal of the Institute of Metals, Reprinted in: The Scientific Papers of G.I. Taylor 1, 1958, Cambridge University Press, Cambridge, UK, 62 (1938) 307-324.

25.N. Pande, K.G. Sharma, Multi-laminate model of clays – a numerical evaluation of the influence of rotation of principal stress axes, International Journal of Numerical and Analytical Methods in Geomechanics, 7(4) (1983) 397-418.

26.C. Caner, Z.P. Bažant, Microplane model M7 for plain concrete. I: formulation, ASCE J Eng. Mech., 139 (2013) 1714–1723.

27.Zreid, M. Kaliske, A gradient enhanced plasticity-damage microplane model for concrete, Comput Mech, 62 (2018) 1239–1257.

28.Sánchez, P.C. Prat, V. Galavi, H.F. Schweiger, Multilaminate and microplane models: Same principles and different solutions for constitutive behaviour of geomaterials, Association for Computer Methods and Advances in Geomechanics (IACMAG), Indian Institute of Technology, Goa, India, Proc., 12th Int.Conf. of Int. (2008) 911–919.

29.Baktheer, M. Aguilar, J. Hegger, R. Chudoba, Microplane Damage Plastic Model for Plain Concrete Subjected to Compressive Fatigue Loading, in: 10th International Conference on Fracture Mechanics of Concrete and Concrete, Bayonne, France, 2019, pp. 1-12.

30.Gambarelli, N. Nisticò, J. Ožbolt, Microplane model for concrete: Part I. State of the art, Applied Mechanics and Materials, 847 (2016) 95-105.

31.P. Bažant, B.H. Oh, Microplane model for progressive fracture of concrete and rock, ASCE J Eng Mech 111 (1985) 559–582.

32.Galavi, H.F. Schweiger, Nonlocal Multi-laminate Model for Strain Softening Analysis, Journal of Geomechanics, ASCE, 1(30) (2010) 1532-3641.

33.Schädlich, H.F. Schweiger, A multilaminate constitutive model accounting for anisotropic small strain stiffness, Int. J. Numer. Anal. Meth. Geomech, 37(10) (2012) 1337-1362.

34.Rowe, Theoretical Meaning and Observed Values of Deformation Parameters for Soil, Proceedings of the Stress-Strain Behaviour of Soils, Roscoe Memorial Symposium, (1971) 143-194.

35.Scotta, R. Vitaliani, A. Saetta, E. Oñate, A. Hanganu, A scalar damage model with a shear retention factor for the analysis of reinforced concrete structures: theory and validation, Computers and structures, 79(7) (2001) 737–755.

36.Van Der Pluijm, Shear behavior of bed joints, 6th North American Masonry Conference, 6-9 June 1993, Philadelphia, Pennsylvania, USA, (1993) 125-136.

37.van der Pluijm, H. Rutten, M. Ceelen, Shear behavior of bed joints, Proceedings of the 12th International Brick/Block Masonry Conference, Madrid, Spain, (2000) 8-12.

38.M. Potts, L. Zdravković, Finite element analysis in geotechnical engineering Theory, London: Telford, 1999.

39.G. Rots, R. de Borst, Analysis of concrete fracture in direct tension, International Journal of Solids and Structures, 25 (1989) 1381–1394.

40.M. Attard, A. Nappi, F. Tin-Loi, Modeling Fracture in Masonry, Journal of Structural Engineering, 133 (2007) 1385-1392.

41.W. Page, The strength of brick masonry under biaxial tension–compression, International Journal of masonry Constructions, 3(1) (1983) 26-31.

42.Shieh-Beygi, S. Pietruszczak, Numerical analysis of structural masonry: mesoscale approach, Computers and Structures, 86 (2008) 1958–1973.

43.Pelà, M. Cervera, S. Oller, M. Chiumenti, A localized mapped damage model for orthotropic materials(in press), Engineering Fracture Mechanics, (2014).

44.Kawa, S. Pietruszczak, B. Shieh-Beygi, Limit states for brick masonry based on homogenization approach, International Journal of Solids and Structures, 45 (2008) 998–1016.