[1] López, C.M., I. Carol, and A. Aguado, Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior. Materials and Structures, 2008. 41(3): p. 583-599.
[2] Pourbakhshian, S. and M. Ghaemian, Investigating stage construction in high concrete arch dams. Indian Journal of Science and Technology, 2015. 8(14): p. 1.
[3] Pouraminian, M., S. Pourbakhshian, and M. Moahammad Hosseini, Reliability analysis of Pole Kheshti historical arch bridge under service loads using SFEM. Journal of Building Pathology and Rehabilitation, 2019. 4(1): p. 21.
[4] Grassl, P. and M. Jirásek, Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension. International Journal of Solids and Structures, 2010. 47(7): p. 957-968.
[5] Bolander, J.E. and S. Saito, Fracture analyses using spring networks with random geometry. Engineering Fracture Mechanics, 1998. 61(5): p. 569-591.
[6] Cusatis, G., Z.P. Bažant, and L. Cedolin, Confinement-shear lattice CSL model for fracture propagation in concrete. Computer Methods in Applied Mechanics and Engineering, 2006. 195(52): p. 7154-7171.
[7] D’Addetta, G.A. and E. Ramm, A Microstructure-based Simulation Environment on the Basis of an Interface Enhanced Particle Model. Granular Matter, 2006. 8(3): p. 159.
[8] Zubelewicz, A. and Z.P. Bažant, Interface Element Modeling of Fracture in Aggregate Composites. Journal of Engineering Mechanics, 1987. 113(11): p. 1619-1630.
[9] Häfner, S., et al., Mesoscale modeling of concrete: Geometry and numerics. Computers & Structures, 2006. 84(7): p. 450-461.
[10] Unger, J.F. and S. Eckardt, Multiscale Modeling of Concrete. Archives of Computational Methods in Engineering, 2011. 18(3): p. 341.
[11] Wang, Z.M., A.K.H. Kwan, and H.C. Chan, Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Computers & Structures, 1999. 70(5): p. 533-544.
[12] Wriggers, P. and S.O. Moftah, Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elements in Analysis and Design, 2006. 42(7): p. 623-636.
[13] Permanoon, A. and A.H. Akhaveissy, Effects of Meso-scale Modeling on Concrete Fracture Parameters Calculation. Periodica Polytechnica. Civil Engineering, 2019. 63(3): p. 782.
[14] CABALLERO, A., I. CAROL, and C.M. LÓPEZ, 3D meso-mechanical analysis of concrete specimens under biaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 2007. 30(9): p. 877-886.
[15] Caballero, A., C.M. López, and I. Carol, 3D meso-structural analysis of concrete specimens under uniaxial tension. Computer Methods in Applied Mechanics and Engineering, 2006. 195(52): p. 7182-7195.
[16] Carol, I., C.M. López, and O. Roa, Micromechanical analysis of quasi-brittle materials using fracture-based interface elements. International Journal for Numerical Methods in Engineering, 2001. 52(1‐2): p. 193-215.
[17] Oliver, J., et al., Continuum approach to computational multiscale modeling of propagating fracture. Computer Methods in Applied Mechanics and Engineering 294.2015: p. 384-427.
[18] Roubin, E., et al., Multi-scale failure of heterogeneous materials: A double kinematics enhancement for Embedded Finite Element Method. International Journal of Solids and Structures, 2015. 52: p. 180-196.
[19] Du, X., L. Jin, and G. Ma, Numerical modeling tensile failure behavior of concrete at mesoscale using extended finite element method. International Journal of Damage Mechanics, 2014. 23(7): p. 872-898.
[20] Bažant, Z.P., et al., Random Particle Model for Fracture of Aggregate or Fiber Composites. Journal of Engineering Mechanics, 1990. 116(8): p. 1686-1705.
[21] Eliáš, J. and H. Stang, Lattice modeling of aggregate interlocking in concrete. International Journal of Fracture, 2012. 175(1): p. 1-11.
[22] Grassl, P., et al., Meso-scale modelling of the size effect on the fracture process zone of concrete. International Journal of Solids and Structures, 2012. 49(13): p. 1818-1827.
[23] Leite, J.P.B., V. Slowik, and H. Mihashi, Computer simulation of fracture processes of concrete using mesolevel models of lattice structures. Cement and Concrete Research, 2004. 34(6): p. 1025-1033.
[24] Lilliu, G. and J.G.M. van Mier, 3D lattice type fracture model for concrete. Engineering Fracture Mechanics, 2003. 70(7): p. 927-941.
[25] Wang, X., Z. Yang, and A.P. Jivkov, Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study. Construction and Building Materials, 2015. 80: p. 262-272.
[26] Kim, S.-M. and R.K. Abu Al-Rub, Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cement and Concrete Research, 2011. 41(3): p. 339-358.
[27] Carpinteri, A., P. Cornetti, and S. Puzzi, A stereological analysis of aggregate grading and size effect on concrete tensile strength. International Journal of Fracture, 2004. 128(1): p. 233-242.
[28] De Schutter, G. and L. Taerwe, Random particle model for concrete based on Delaunay triangulation. Materials and Structures, 1993. 26(2): p. 67-73.
[29] Niknezhad, D., et al., Towards a realistic morphological model for the meso-scale mechanical and transport behavior of cementitious composites. Composites Part B: Engineering, 2015. 81: p. 72-83.
[30] Schlangen, E. and E.J. Garboczi, Fracture simulations of concrete using lattice models: Computational aspects. Engineering Fracture Mechanics, 1997. 57(2): p. 319-332.
[31] Garboczi, E.J., Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete. Cement and Concrete Research, 2002. 32(10): p. 1621-1638.
[32] Huang, Y., et al., 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model. International Journal of Solids and Structures, 2015. 67-68: p. 340-352.
[33] de Wolski, S.C., J.E. Bolander, and E.N. Landis, An In-Situ X-Ray Microtomography Study of Split Cylinder Fracture in Cement-Based Materials. Experimental Mechanics, 2014. 54(7): p. 1227-1235.
[34] Li, Q., G. Steven, and Y. Xie, On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization. Structural optimization, 1999. 18(1): p. 67-73.
[35] McKeown, J.J., A note on the equivalence between maximum stiffness and maximum strength trusses. Engineering Optimization, 1997. 29(1-4): p. 443-456.
[36] Papadrakakis, M., et al., Advanced solution methods in topology optimization and shape sensitivity analysis. Engineering Computations: Int J for Computer-Aided Engineering, 1996. 1:(5)3 p. 57-90.
[37] Bendsøe, M.P. and O. Sigmund, Material interpolation schemes in topology optimization. Archive of applied mechanics, 1999. 69(9-10): p. 635-654.
[38] Grandhi, R., Structural optimization with frequency constraints-a review. AIAA journal, (12)31: p. 2296-2303.
[39] Xie, Y.M. and G.P. Steven, Basic evolutionary structural optimization, in Evolutionary structural optimization. 1997, Springer. p. 12-29.
[40] Huang, X., Z. Zuo, and Y. Xie, Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Computers & structures, 2010. 88(5-6): p. 357-364.
[41] Keller, J.B., The shape of the strongest column. Archive for Rational Mechanics and Analysis, 1960. 5(1): p. 275-285.
[42] Szyszkowski, W. and L. Watson, Optimization of the buckling load of columns and frames. Engineering Structures, 1988. 10(4): p. 249-256.
[43] Szyszkowski, W., L. Watson, and B. Fietkiewicz, Bimodal optimization of frames for maximum stability. Computers & structures, 1989. 32(5): p. 11104-093.
[44] Rong, J., Y. Xie, and X. Yang, An improved method for evolutionary structural optimisation against buckling. Computers & Structures, 2001. 79(3): p. 253-263.
[45] Walraven, J. and H. Reinhardt, Concrete mechanics. Part A: Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading. STIN, 1981. 82: p. 25417.
[46] Rodrigues, E.A., et al., 2D mesoscale model for concrete based on the use of interface element with a high aspect ratio. International Journal of Solids and Structures, 2016. 94: p. 112-124.
[47] Rodrigues, E.A., et al., An adaptive concurrent multiscale model for concrete based on coupling finite elements. Computer Methods in Applied Mechanics and Engineering, 2018. 328: p. 26-46.
[48] Trawiński, W., J. Tejchman, and J. Bobiński, A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray μCT images. Engineering Fracture Mechanics, 2018. 189: p. 27-50.
[49] Wang, X., M. Zhang, and A.P. Jivkov, Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete. International Journal of Solids and Structures, 2016. 80: p. 310-333.
[50] Trawiński, W., J. Bobiński, and J. Tejchman, Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray μCT images. Engineering Fracture Mechanics, 2016. 168: p. 204-226.
[51] Maleki, M., et al., On the effect of ITZ thickness in meso-scale models of concrete. Construction and Building Materials, 2020. 258: p. 119639.
[52] López, C.M., I. Carol, and A. Aguado, Meso-structural study of concrete fracture using interface elements. II: compression, biaxial and Brazilian test. Materials and Structures, 2008. 41(3): p. 601-620.
[53] Gui, X., et al. Structural Topology Optimization based on Parametric Level Set Method under the Environment of ANSYS Secondary Development. in 2nd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2017). 2016. Atlantis Press.
[54] Hu, J., et al., Fracture strength topology optimization of structural specific position using a bi-directional evolutionary structural optimization method. Engineering Optimization, 2019.
[55] Du, Z., et al., Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression. Computational Mechanics, 2019. 63(2): p. 335-363.
[56] Amir, O. and E. Shakour, Simultaneous shape and topology optimization of prestressed concrete beams. Structural and Multidisciplinary Optimization, 2018. 57(5): p. 1831-1843.
[57] Munk, D.J., G.A. Vio, and G.P. Steven, Topology and shape optimization methods using evolutionary algorithms: a review. Structural and Multidisciplinary Optimization, 2015. 52(3): p. 61631-3.
[58] Sukumar, N. and J.H. Prévost, Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. International Journal of Solids and Structures, 2003. 40(26): p. 7513-7537.
[59] Huang, R., N. Sukumar, and J.H. Prévost, Modeling quasi-static crack growth with the extended finite element method Part II: Numerical applications. International Journal of Solids and Structures, 2003. 40(26): p. 7539-7552.
[60] Sukumar, N., et al., Partition of unity enrichment for bimaterial interface cracks. International journal for numerical methods in engineering, 2004. 59(8): p. 1075-1102.
[61] Elguedj, T., A. Gravouil, and A. Combescure, Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 2006. 195(7): p. 501-515.
[62] Fries, T.-P. and M. Baydoun, Crack propagation with the extended finite element method and a hybrid explicit–implicit crack description. International Journal for Numerical Methods in Engineering, 2012. 89(12): p. 1527-1558.
[63] Alfano, G. and M.A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering, 2001. 50(7): p. 1701-1736.
[64] Park, K. and G.H. Paulino, Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Applied Mechanics Reviews, 2011. 64.(6)
[65] Nguyen, V.P., et al., Modelling hydraulic fractures in porous media using flow cohesive interface elements. Engineering Geology, 2017. 225: p. 68-82.
[66] Wang, H., M. Marongiu-Porcu, and M.J. Economides, Poroelastic and Poroplastic Modeling of Hydraulic Fracturing in Brittle and Ductile Formations. SPE Production & Operations, 2016. 31(01): p. 47-59.
[67] Chen, Z., et al., Cohesive zone finite element-based modeling of hydraulic fractures. Acta Mechanica Solida Sinica, 2009. 22(5): p. 443-452.
[68] Belytschko, T., et al., Nonlinear finite elements for continua and structures. 2013: John wiley & sons.
[69] Feng, D.-C. and J.-Y. Wu, Phase-field regularized cohesive zone model (CZM) and size effect of concrete. Engineering Fracture Mechanics, 2018. 197: p. 66-79.
[70] Nian, G., et al., A cohesive zone model incorporating a Coulomb friction law for fiber-reinforced composites. Composites Science and Technology, 2018. 157: p. 195-201.
[71] Yang, Z.-J., B.-B. Li, and J.-Y. Wu, X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete. Engineering Fracture Mechanics, 2019. 208: p. 151-170.
[72] Dahi Taleghani, A., et al., Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model. Journal of Petroleum Science and Engineering, 2018. 165: p. 42-57.
[73] Menetrey, P., Numerical analysis of punching failure in reinforced concrete structures. EPFL.
[74] Menétrey, P., Synthesis of punching failure in reinforced concrete. Cement and Concrete Composites, 2002. 24: (6) p. 497-507.
[75] Dmitriev, A., et al., Calibration and Validation of the Menetrey-Willam Constitutive Model for Concrete. Construction of Unique Buildings and Structures, 2020. 88(3): p. 8804-8804.
[76] Skarżyński, Ł. and J. Tejchman, Experimental Investigations of Fracture Process in Concrete by Means of X-ray Micro-computed Tomography. Strain, 2016. 52(1): p. 26-45.
[77] Skarżyński, Ł., E. Syroka, and J. Tejchman, Measurements and Calculations of the Width of the Fracture Process Zones on the Surface of Notched Concrete Beams. Strain, 2011. 47(s1): p. e319-e332.
[78] Gálvez, J., et al. Fracture of concrete under mixed loading-experimental results and numerical prediction. in Proceedings of FRAMCOS. 1998.