بررسی روند گسترش ترک با مقیاس مزو در تیرهای بتنی و استفاده از بهینه‌سازی توپولوژی

نوع مقاله : مقاله پژوهشی

نویسندگان

فنی و مهندسی، رازی، کرمانشاه، ایران

چکیده

در این بررسی یک روش جدید برای کاهش حجم محاسبات مدل‌سازی عددی بتن در مقیاس مزو ارائه شده ‌است. برای بررسی رفتار بتن از 2 مقیاس جداگانه ماکرو و مزو استفاده شد. با توجه به اینکه توزیع تنش در مقیاس ماکرو می‌­تواند شاخص مناسبی برای تعیین مناطق بحرانی ترک (شروع و رشد ترک) باشد، بنابراین در مقیاس ماکرو مدل عددی با استفاده از روش اجزای محدود توسعه یافته تحلیل شده و در هر گام با استفاده از ماکروی بهینه‌سازی مناطق بحرانی مشخص، و سپس مجموع این مناطق در مدل اصلی در مقیاس مزو مدل می­‌شوند. در مقیاس مزو 3 بخش، سنگدانه با رفتار خطی، ملات سیمان و ناحیه انتقال با رفتار غیرخطی مدل­‌سازی شده است. سنگدانه‌­ها توسط الگوریتم تصادفی و منحنی فولر با شکل دایره‌­ای در ملات سیمان توزیع می­شوند. برای گسسته‌سازی در مقیاس مزو از روش گسسته‌سازی تکه‌­ای با در نظر گرفتن منطقه چسبنده برای تمامی المان‌ها استفاده شد، با استفاده از این روش شروع و رشد ترک به خوبی مدل‌­سازی می‌­شود. برای اطمینان از این روش 2 مثال عددی به صورت 2 بعدی بررسی گردید، نتایج تحلیل­‌های عددی تطابق کاملا مناسبی با نتایج آزمایشگاهی داشت و همچنین حجم محاسبات با حفظ دقت به طور متوسط 35 درصد کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An investigation of meso-scale crack propagation process in concrete beams using topology optimization

نویسندگان [English]

  • ali permanoon
  • Amir Hoshang Akhaveissy
Razi University
چکیده [English]

The current research seeks to investigate a novel method for reducing the computational costs of concrete modeling in the meso-scale. Two separate scales, macro and meso, were used to evaluate concrete behavior. As the stress distribution at the macro scale can be a good indicator to determine the crack critical zones (onset and growth of crack), the numerical model is analyzed at the macro scale using the extended finite element method (XFEM), and then, critical zones are specified in each step using macro-optimization. Afterward, the sum of the zones is modeled in the main model at the meso-scale. At the meso-scale, the three parts of aggregate are modeled with linear behavior, and cement mortar and transfer zone with nonlinear behavior. Aggregates are distributed in cement mortar by a random algorithm and Fuller curve in a circular shape. For meso-scale discretization, the piecemeal discretization method was used, considering the adhesive zone for all elements. Using this method, crack onset and growth are properly modeled. To validate this method, two numerical examples were examined in 2D. The numerical analysis results were in perfect agreement with the laboratory results, and the volume of the calculations was reduced by an average of 35% while maintaining accuracy.

کلیدواژه‌ها [English]

  • Crack growth
  • meso-scale
  • Topology optimization
  • Finite elements method
  • Extended finite element method
[1]        López, C.M., I. Carol, and A. Aguado, Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior. Materials and Structures, 2008. 41(3): p. 583-599.
[2]        Pourbakhshian, S. and M. Ghaemian, Investigating stage construction in high concrete arch dams. Indian Journal of Science and Technology, 2015. 8(14): p. 1.
[3]        Pouraminian, M., S. Pourbakhshian, and M. Moahammad Hosseini, Reliability analysis of Pole Kheshti historical arch bridge under service loads using SFEM. Journal of Building Pathology and Rehabilitation, 2019. 4(1): p. 21.
[4]        Grassl, P. and M. Jirásek, Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension. International Journal of Solids and Structures, 2010. 47(7): p. 957-968.
[5]        Bolander, J.E. and S. Saito, Fracture analyses using spring networks with random geometry. Engineering Fracture Mechanics, 1998. 61(5): p. 569-591.
[6]        Cusatis, G., Z.P. Bažant, and L. Cedolin, Confinement-shear lattice CSL model for fracture propagation in concrete. Computer Methods in Applied Mechanics and Engineering, 2006. 195(52): p. 7154-7171.
[7]        D’Addetta, G.A. and E. Ramm, A Microstructure-based Simulation Environment on the Basis of an Interface Enhanced Particle Model. Granular Matter, 2006. 8(3): p. 159.
[8]        Zubelewicz, A. and Z.P. Bažant, Interface Element Modeling of Fracture in Aggregate Composites. Journal of Engineering Mechanics, 1987. 113(11): p. 1619-1630.
[9]        Häfner, S., et al., Mesoscale modeling of concrete: Geometry and numerics. Computers & Structures, 2006. 84(7): p. 450-461.
[10]      Unger, J.F. and S. Eckardt, Multiscale Modeling of Concrete. Archives of Computational Methods in Engineering, 2011. 18(3): p. 341.
[11]      Wang, Z.M., A.K.H. Kwan, and H.C. Chan, Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Computers & Structures, 1999. 70(5): p. 533-544.
[12]      Wriggers, P. and S.O. Moftah, Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elements in Analysis and Design, 2006. 42(7): p. 623-636.
[13]      Permanoon, A. and A.H. Akhaveissy, Effects of Meso-scale Modeling on Concrete Fracture Parameters Calculation. Periodica Polytechnica. Civil Engineering, 2019. 63(3): p. 782.
[14]      CABALLERO, A., I. CAROL, and C.M. LÓPEZ, 3D meso-mechanical analysis of concrete specimens under biaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 2007. 30(9): p. 877-886.
[15]      Caballero, A., C.M. López, and I. Carol, 3D meso-structural analysis of concrete specimens under uniaxial tension. Computer Methods in Applied Mechanics and Engineering, 2006. 195(52): p. 7182-7195.
[16]      Carol, I., C.M. López, and O. Roa, Micromechanical analysis of quasi-brittle materials using fracture-based interface elements. International Journal for Numerical Methods in Engineering, 2001. 52(1‐2): p. 193-215.
[17]      Oliver, J., et al., Continuum approach to computational multiscale modeling of propagating fracture. Computer Methods in Applied Mechanics and Engineering 294.2015: p. 384-427.
[18]      Roubin, E., et al., Multi-scale failure of heterogeneous materials: A double kinematics enhancement for Embedded Finite Element Method. International Journal of Solids and Structures, 2015. 52: p. 180-196.
[19]      Du, X., L. Jin, and G. Ma, Numerical modeling tensile failure behavior of concrete at mesoscale using extended finite element method. International Journal of Damage Mechanics, 2014. 23(7): p. 872-898.
[20]      Bažant, Z.P., et al., Random Particle Model for Fracture of Aggregate or Fiber Composites. Journal of Engineering Mechanics, 1990. 116(8): p. 1686-1705.
[21]      Eliáš, J. and H. Stang, Lattice modeling of aggregate interlocking in concrete. International Journal of Fracture, 2012. 175(1): p. 1-11.
[22]      Grassl, P., et al., Meso-scale modelling of the size effect on the fracture process zone of concrete. International Journal of Solids and Structures, 2012. 49(13): p. 1818-1827.
[23]      Leite, J.P.B., V. Slowik, and H. Mihashi, Computer simulation of fracture processes of concrete using mesolevel models of lattice structures. Cement and Concrete Research, 2004. 34(6): p. 1025-1033.
[24]      Lilliu, G. and J.G.M. van Mier, 3D lattice type fracture model for concrete. Engineering Fracture Mechanics, 2003. 70(7): p. 927-941.
[25]      Wang, X., Z. Yang, and A.P. Jivkov, Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study. Construction and Building Materials, 2015. 80: p. 262-272.
[26]      Kim, S.-M. and R.K. Abu Al-Rub, Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cement and Concrete Research, 2011. 41(3): p. 339-358.
[27]      Carpinteri, A., P. Cornetti, and S. Puzzi, A stereological analysis of aggregate grading and size effect on concrete tensile strength. International Journal of Fracture, 2004. 128(1): p. 233-242.
[28]      De Schutter, G. and L. Taerwe, Random particle model for concrete based on Delaunay triangulation. Materials and Structures, 1993. 26(2): p. 67-73.
[29]      Niknezhad, D., et al., Towards a realistic morphological model for the meso-scale mechanical and transport behavior of cementitious composites. Composites Part B: Engineering, 2015. 81: p. 72-83.
[30]      Schlangen, E. and E.J. Garboczi, Fracture simulations of concrete using lattice models: Computational aspects. Engineering Fracture Mechanics, 1997. 57(2): p. 319-332.
[31]      Garboczi, E.J., Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete. Cement and Concrete Research, 2002. 32(10): p. 1621-1638.
[32]      Huang, Y., et al., 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model. International Journal of Solids and Structures, 2015. 67-68: p. 340-352.
[33]      de Wolski, S.C., J.E. Bolander, and E.N. Landis, An In-Situ X-Ray Microtomography Study of Split Cylinder Fracture in Cement-Based Materials. Experimental Mechanics, 2014. 54(7): p. 1227-1235.
[34]      Li, Q., G. Steven, and Y. Xie, On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization. Structural optimization, 1999. 18(1): p. 67-73.
[35]      McKeown, J.J., A note on the equivalence between maximum stiffness and maximum strength trusses. Engineering Optimization, 1997. 29(1-4): p. 443-456.
[36]      Papadrakakis, M., et al., Advanced solution methods in topology optimization and shape sensitivity analysis. Engineering Computations: Int J for Computer-Aided Engineering, 1996. 1:(5)3 p. 57-90.
[37]      Bendsøe, M.P. and O. Sigmund, Material interpolation schemes in topology optimization. Archive of applied mechanics, 1999. 69(9-10): p. 635-654.
[38]      Grandhi, R., Structural optimization with frequency constraints-a review. AIAA journal, (12)31: p. 2296-2303.
[39]      Xie, Y.M. and G.P. Steven, Basic evolutionary structural optimization, in Evolutionary structural optimization. 1997, Springer. p. 12-29.
[40]      Huang, X., Z. Zuo, and Y. Xie, Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Computers & structures, 2010. 88(5-6): p. 357-364.
[41]      Keller, J.B., The shape of the strongest column. Archive for Rational Mechanics and Analysis, 1960. 5(1): p. 275-285.
[42]      Szyszkowski, W. and L. Watson, Optimization of the buckling load of columns and frames. Engineering Structures, 1988. 10(4): p. 249-256.
[43]      Szyszkowski, W., L. Watson, and B. Fietkiewicz, Bimodal optimization of frames for maximum stability. Computers & structures, 1989. 32(5): p. 11104-093.
[44]      Rong, J., Y. Xie, and X. Yang, An improved method for evolutionary structural optimisation against buckling. Computers & Structures, 2001. 79(3): p. 253-263.
[45]      Walraven, J. and H. Reinhardt, Concrete mechanics. Part A: Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading. STIN, 1981. 82: p. 25417.
[46]      Rodrigues, E.A., et al., 2D mesoscale model for concrete based on the use of interface element with a high aspect ratio. International Journal of Solids and Structures, 2016. 94: p. 112-124.
[47]      Rodrigues, E.A., et al., An adaptive concurrent multiscale model for concrete based on coupling finite elements. Computer Methods in Applied Mechanics and Engineering, 2018. 328: p. 26-46.
[48]      Trawiński, W., J. Tejchman, and J. Bobiński, A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray μCT images. Engineering Fracture Mechanics, 2018. 189: p. 27-50.
[49]      Wang, X., M. Zhang, and A.P. Jivkov, Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete. International Journal of Solids and Structures, 2016. 80: p. 310-333.
[50]      Trawiński, W., J. Bobiński, and J. Tejchman, Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray μCT images. Engineering Fracture Mechanics, 2016. 168: p. 204-226.
[51]      Maleki, M., et al., On the effect of ITZ thickness in meso-scale models of concrete. Construction and Building Materials, 2020. 258: p. 119639.
[52]      López, C.M., I. Carol, and A. Aguado, Meso-structural study of concrete fracture using interface elements. II: compression, biaxial and Brazilian test. Materials and Structures, 2008. 41(3): p. 601-620.
[53]      Gui, X., et al. Structural Topology Optimization based on Parametric Level Set Method under the Environment of ANSYS Secondary Development. in 2nd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2017). 2016. Atlantis Press.
[54]      Hu, J., et al., Fracture strength topology optimization of structural specific position using a bi-directional evolutionary structural optimization method. Engineering Optimization, 2019.
[55]      Du, Z., et al., Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression. Computational Mechanics, 2019. 63(2): p. 335-363.
[56]      Amir, O. and E. Shakour, Simultaneous shape and topology optimization of prestressed concrete beams. Structural and Multidisciplinary Optimization, 2018. 57(5): p. 1831-1843.
[57]      Munk, D.J., G.A. Vio, and G.P. Steven, Topology and shape optimization methods using evolutionary algorithms: a review. Structural and Multidisciplinary Optimization, 2015. 52(3): p. 61631-3.
[58]      Sukumar, N. and J.H. Prévost, Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. International Journal of Solids and Structures, 2003. 40(26): p. 7513-7537.
[59]      Huang, R., N. Sukumar, and J.H. Prévost, Modeling quasi-static crack growth with the extended finite element method Part II: Numerical applications. International Journal of Solids and Structures, 2003. 40(26): p. 7539-7552.
[60]      Sukumar, N., et al., Partition of unity enrichment for bimaterial interface cracks. International journal for numerical methods in engineering, 2004. 59(8): p. 1075-1102.
[61]      Elguedj, T., A. Gravouil, and A. Combescure, Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 2006. 195(7): p. 501-515.
[62]      Fries, T.-P. and M. Baydoun, Crack propagation with the extended finite element method and a hybrid explicit–implicit crack description. International Journal for Numerical Methods in Engineering, 2012. 89(12): p. 1527-1558.
[63]      Alfano, G. and M.A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering, 2001. 50(7): p. 1701-1736.
[64]      Park, K. and G.H. Paulino, Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Applied Mechanics Reviews, 2011. 64.(6)
[65]      Nguyen, V.P., et al., Modelling hydraulic fractures in porous media using flow cohesive interface elements. Engineering Geology, 2017. 225: p. 68-82.
[66]      Wang, H., M. Marongiu-Porcu, and M.J. Economides, Poroelastic and Poroplastic Modeling of Hydraulic Fracturing in Brittle and Ductile Formations. SPE Production & Operations, 2016. 31(01): p. 47-59.
[67]      Chen, Z., et al., Cohesive zone finite element-based modeling of hydraulic fractures. Acta Mechanica Solida Sinica, 2009. 22(5): p. 443-452.
[68]      Belytschko, T., et al., Nonlinear finite elements for continua and structures. 2013: John wiley & sons.
[69]      Feng, D.-C. and J.-Y. Wu, Phase-field regularized cohesive zone model (CZM) and size effect of concrete. Engineering Fracture Mechanics, 2018. 197: p. 66-79.
[70]      Nian, G., et al., A cohesive zone model incorporating a Coulomb friction law for fiber-reinforced composites. Composites Science and Technology, 2018. 157: p. 195-201.
[71]      Yang, Z.-J., B.-B. Li, and J.-Y. Wu, X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete. Engineering Fracture Mechanics, 2019. 208: p. 151-170.
[72]      Dahi Taleghani, A., et al., Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model. Journal of Petroleum Science and Engineering, 2018. 165: p. 42-57.
[73]      Menetrey, P., Numerical analysis of punching failure in reinforced concrete structures. EPFL.
[74]      Menétrey, P., Synthesis of punching failure in reinforced concrete. Cement and Concrete Composites, 2002. 24: (6) p. 497-507.
[75]      Dmitriev, A., et al., Calibration and Validation of the Menetrey-Willam Constitutive Model for Concrete. Construction of Unique Buildings and Structures, 2020. 88(3): p. 8804-8804.
[76]      Skarżyński, Ł. and J. Tejchman, Experimental Investigations of Fracture Process in Concrete by Means of X-ray Micro-computed Tomography. Strain, 2016. 52(1): p. 26-45.
[77]      Skarżyński, Ł., E. Syroka, and J. Tejchman, Measurements and Calculations of the Width of the Fracture Process Zones on the Surface of Notched Concrete Beams. Strain, 2011. 47(s1): p. e319-e332.
[78]      Gálvez, J., et al. Fracture of concrete under mixed loading-experimental results and numerical prediction. in Proceedings of FRAMCOS. 1998.