ارائه روشی نوین در بهبود پایش فصلی دمای سطح آب رودخانه کارون با استفاده از تصاویر ماهواره‌ای لندست-8

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی مهندسی سنجش از دور، دانشکده مهندسی عمران و نقشه برداری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان

2 استادیار، گروه مهندسی آب، دانشکده مهندسی عمران و نقشه برداری، دانشگاه تحصیلات تکمیلی کرمان

چکیده

همواره اندازه‌گیری دقیق دمای جریان‌های سطحی در ارزیابی پارامترهای کیفی و به دنبال آن طبقه‌بندی کیفی جریان‌های سطحی نقش کلیدی را ایفا می‌نماید. به منظور اندازه‌گیری دمای سطح آب جریان‌های طبیعی روش‌های میدانی و ابزارهای آزمایشگاهی متنوعی وجود دارد. اما اندازه‌گیری دما در این منابع به صورت پیوسته امکان‌پذیر نمی‌باشد؛ لذا استفاده از داده‌های سنجش از دوری به عنوان یک راه‌حل کلیدی پیشنهاد می‌شود که در آن امکان اندازه‌گیری پیوسته دما با سرعت بیشتر، مدت زمان کمتر و با هزینه مقرون به صرفه وجود دارد. در تحقیق حاضر از چهار صحنه تصویر مربوط به ماهواره‌ لندست-8 در چهار زمان‎ مختلف (5 خرداد 1398، 23 مرداد 1398، 11 آبان 1398 و 16 اسفند 1398) جهت برآورد دمای سطح آب رودخانه کارون استفاده شد. به این ترتیب، بعد از اعمال پیش‌پردازش‌های لازم‌ بر روی تصاویر، ابتدا با استفاده از یک شاخص آبی تفاضلی نرمال شده (NDWI) اقدام به جداسازی مناطق آبی از سایر مناطق شد، سپس با انتخاب دقیق مرز رودخانه و استخراج آن از باند حرارتی ماهواره لندست-8، دمای سطح آب با استفاده از برنامه‌نویسی الگوریتم مربوطه در محیط IDL نرم‌افزار ENVI 5.3 محاسبه شد. در نهایت، با ارزیابی نتایج حاصل از داده‌های سنجش از دور و داده‌های میدانی، مقادیر مجذور میانگین مربعات خطا (RMSE) در ماه‌های خرداد، مرداد، آبان و اسفند به ترتیب برابر با 0/4، 0/33، 0/36 و 0/34 درجه سانتی‌گراد حاصل شد که نشان‌دهنده دقت مطلوبی است. نتایج حاصل نشان داد که داده‎های سنجش از دور یک ابزار دقیق به منظور برآورد دمای سطوح آبی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting a New Method to Improve Seasonal Monitoring of Karun River Water Surface Temperature using Landsat-8 Satellite Images

نویسندگان [English]

  • Hadi Farhadi 1
  • Mohammad Najafzadeh 2
1 M. SC. Student in Remote Sensing Engineering, Department of surveying Engineering, faculty of civil and Surveying Engineering, graduate university of advanced technology, Kerman
2 Department of Water Engineering, Faculty of Civil and Survey Engineering, Graduate University of Advanced Technology, Kerman
چکیده [English]

An accurate estimation of temperature for surface streams plays a key role in assessing quality parameters and additionally their quality classification. To obtain this goal, there are a variety of field methods and laboratory tools for measuring water surface temperature (WST). However, it is not possible to continuously measure temperature in these sources, so it is recommended to use remote sensing data as a key solution in which it is possible to continuously measure temperature. In the current study, four images of Landsat-8 satellite imagery were used at four different times (07/March/2019، 26/May/2019، 14/August/2019, and 02/November/2019) to estimate the water surface temperature of the Karun River. Thus, after applying the necessary preconceptions to the images, the first Normalized Differential Water Index (NDWI) was used to separate the water areas from other areas. Then, the river boundary was carefully selected and extracted from the Landsat-8 satellite thermal band. The water surface temperature was calculated using the corresponding programming algorithm in the IDL environment of the ENVI software. Finally, to make a comparison between the results of Remote Sensing and recorded WST values, the Root-Mean-Squared-Error (RMSE) parameters for March, May, August, and November months were 0.34, 0.4, 0.33, and 0.36 (°C), respectively, indicating the satisfying accuracy level. The results showed that the Remote Sensing data is an accurate instrument for estimating WSTs.

کلیدواژه‌ها [English]

  • Remote sensing
  • Landsat- 8
  • Spectral index
  • Water surface temperature
  • Karun river
  1. Yu, X. Guo, Z. Wu, Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method, Remote sensing, 6(10) (2014) 9829-9852.
  2. Syariz, L. Jaelani, L. Subehi, A. Pamungkas, E. Koenhardono, A. Sulisetyono, Retrieval of sea surface temperature over poteran island water of indonesia with Landsat 8 tirs image: A preliminary algorithm, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40 (2015) 87.
  3. Amini, Gh.R. Barati, A.R. SHakiba, M. Moradi, M. Karampour, the impact of monthly fluctuations Mediterranean sea surface temperature in the fluctuations of monthly precipitation northwest Iran, in: Journal of Researches in Earth Sciences, 31(8), 2017, pp. 28-41./In Persian
  4. Oppenheimer, SABINS, FF 1997. Remote Sensing. Principles and Interpretation, xiii+ 494 pp. New York: WH Freeman & Co. Price£ 32.95 (hard covers). ISBN 0 7167 2442 1, Geological Magazine, 135(1) (1998) 143-158
  5. B. Fatemi, Y. Resaei, Basics of Remote Sensing, Azadeh, 2017. /In Persian
  6. Rahman, L. Di, E. Yu, L. Lin, C. Zhang, J. Tang, Rapid flood progress monitoring in cropland with NASA SMAP, Remote Sensing, 11(2) (2019) 191.
  7. Bernstein, Sea surface temperature estimation using the NOAA 6 satellite advanced very high resolution radiometer, Journal of Geophysical Research: Oceans, 87(C12) (1982) 9455-9465.
  8. P. McClain, W.G. Pichel, C.C. Walton, Comparative performance of AVHRR‐based multichannel sea surface temperatures, Journal of Geophysical Research: Oceans, 90(C6) (1985) 11587-11601.
  9. McMillin, D. Crosby, Theory and validation of the multiple window sea surface temperature technique, Journal of Geophysical Research: Oceans, 89(C3) (1984) 3655-3661
  10. M. McMillin, Estimation of sea surface temperatures from two infrared window measurements with different absorption, Journal of geophysical research, 80(36) (1975) 5113-5117.
  11. Kilpatrick, G.P. Podesta, R. Evans, Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database, Journal of Geophysical Research: Oceans, 106(C5) (2001) 9179-9197.
  12. Li, W. Pichel, E. Maturi, P. Clemente-Colon, J. Sapper, Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3, International Journal of Remote Sensing, 22(4) (2001) 699-704.
  13. Walton, W. Pichel, J. Sapper, D. May, The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar‐orbiting environmental satellites, Journal of Geophysical Research: Oceans, 103(C12) (1998) 27999-28012.
  14. C. Walton, Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data, Journal of Applied Meteorology, 27(2) (1988) 115-124.
  15. H. Alcântara, et al., Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir, Remote Sensing of Environment, 114(11) (2010) 2651-2665.
  16. Donlon, S. Castro, A. Kaye, Aircraft validation of ERS-1 ATSR and NOAA-14 AVHRR sea surface temperature measurements, International Journal of Remote Sensing, 20(18) (1999) 3503-3513.
  17. Hao, T. Cui, V.P. Singh, J. Zhang, R. Yu, Z. Zhang, Validation of MODIS Sea Surface Temperature Product in the Coastal Waters of the Yellow Sea, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5) (2017) 1667-1680
  18. Kumar, P. Minnett, G. Podestá, R. Evans, K. Kilpatrick, Analysis of Pathfinder SST algorithm for global and regional conditions, Journal of Earth System Science, 109(4) (2000) 395-405.
  19. Marti-Cardona, T. Steissberg, S. Schladow, S. Hook, Relating fish kills to upwellings and wind patterns in the Salton Sea, in: The Salton Sea Centennial Symposium, Springer, 2008, pp. 85-95.
  20. A. May, W.O. Osterman, Satellite-derived sea surface temperatures: Evaluation of GOES-8 and GOES-9 multispectral imager retrieval accuracy, Journal of Atmospheric and Oceanic Technology, 15(3) (1998) 788-797.
  21. J. Minnett, R.H. Evans, E.J. Kearns, O.B. Brown, Sea-surface temperature measured by the Moderate Resolution Imaging Spectroradiometer (MODIS), in: IEEE International Geoscience and Remote Sensing Symposium, Ieee, 2002, pp. 1177-1179.
  22. -A. Park, E.-Y. Lee, X. Li, S.-R. Chung, E.-H. Sohn, S. Hong, NOAA/AVHRR sea surface temperature accuracy in the East/Japan Sea, International Journal of Digital Earth, 8(10) (2015) 784-804.
  23. Prats, N. Reynaud, D. Rebière, T. Peroux, T. Tormos, P.-A. Danis, LakeSST: Lake skin surface temperature in French inland water bodies for 1999-2016 from Landsat archives, (2018).
  24. Schneider, S.J. Hook, Space observations of inland water bodies show rapid surface warming since 1985, Geophysical Research Letters, 37(22) (2010).
  25. E. Steissberg, S.J. Hook, S.G. Schladow, Measuring surface currents in lakes with high spatial resolution thermal infrared imagery, Geophysical research letters, 32(11) (2005).
  26. Thomas, D. Byrne, R. Weatherbee, Coastal sea surface temperature variability from Landsat infrared data, Remote Sensing of Environment, 81(2-3) (2002) 262-272.
  27. Wloczyk, R. Richter, E. Borg, W. Neubert, Sea and lake surface temperature retrieval from Landsat thermal data in Northern Germany, International Journal of Remote Sensing, 27(12) (2006) 2489-2502.
  28. Fazelpoor, A. Dadollahi Sohrab, H. Elmizadeh, H. Mohammad Asgari, S.H. Khazaei, The evaluation of sea surface temperature and the relationship between SST and depth in the Persian Gulf by MODIS, Journal of Marine Science and Technology, 15(2) (2016) 130-142.
  29. Farzin, A. Nazari Samani, S. Feiznia, G.A. Kazemi, Determination of submarine groundwater discharge probable areas into the Persian Gulf on coastlines of Bushehr Province using standard thermal anomaly map, Iranian Journal of ECO Hydrology, 4(2) (2017) 477-488./In Persian
  30. Medina-Lopez, L. Ureña-Fuentes, High-Resolution Sea Surface Temperature and Salinity in Coastal Areas Worldwide from Raw Satellite Data, Remote Sensing, 11(19) (2019) 2191.
  31. -C. Jang, K. Park, High-Resolution Sea Surface Temperature Retrieval from Landsat 8 OLI/TIRS Data at Coastal Regions, Remote Sensing, 11(22) (2019) 2687.
  32. Isaya Ndossi, U. Avdan, Application of open source coding technologies in the production of land surface temperature (LST) maps from Landsat: a PyQGIS plugin, Remote sensing, 8(5) (2016) 413.
  33. A. Lamaro, A. Marinelarena, S.E. Torrusio, S.E. Sala, Water surface temperature estimation from Landsat 7 ETM+ thermal infrared data using the generalized single-channel method: Case study of Embalse del Río Tercero (Córdoba, Argentina), Advances in Space Research, 51(3) (2013) 492-500
  34. K. McFeeters, The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, International journal of remote sensing, 17(7) (1996) 1425-1432.
  35. Emamgholizadeh, H. Kashi, I. Marofpoor, E. Zalaghi, Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models, International Journal of Environmental Science and Technology, 11(3) (2014) 645-656.
  36. Aryafar, V. Khosravi, H. Zarepourfard, R. Rooki, Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran, Environmental earth sciences, 78(3) (2019) 69.
  37. Aryafar, V. Khosravi, F. Hooshfar, GIS-based comparative characterization of groundwater quality of Tabas basin using multivariate statistical techniques and computational intelligence, International Journal of Environmental Science and Technology, 16(10) (2019) 6277-6290.
  38. Tropsha, P. Gramatica, V.K. Gombar, The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models, QSAR & Combinatorial Science, 22(1) (2003) 69-77.
  39. M. Sattar, Gene expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow, Journal of Pipeline Systems Engineering and Practice, 5(1) (2014) 04013011.
  40. Najafzadeh, S. Sarkamaryan, Extraction of optimal equations for evaluation of pipeline scour depth due to currents, in: Proceedings of the Institution of Civil Engineers-Maritime Engineering, Thomas Telford Ltd, 2018, pp. 1-10.
  41. Najafzadeh, M. Rezaie Balf, E. Rashedi, Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models, Journal of Hydroinformatics, 18(5) (2016) 867-884.