گسترش تحلیلی مشارکت مودهای بالاتر در تخمین پاسخ لرزه‌ای سازه‌های بلند مرتبه قاب محیطی خمشی دارای المان‌های زیپر بزرگ ‌مقیاس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 A

2 عضو هیات علمی دانشگاه خوارزمی

3 Kharazmi University

چکیده

این مقاله در برگیرنده یک نگرش محاسباتی بر کارایی تحلیلی روش پوش‌آور مودال در پیش‌بینی پارامترهای پاسخ‌ غیرخطی سازه بلند مرتبه قاب محیطی خمشی فولادی دارای پیکربندی المان‌های زیپر بزرگ ‌مقیاس است. دقت نتایج این روش از طریق مقایسه با پاسخ‌های معیار حاصل از دو مجموعه تحلیل‌های غیرخطی تاریخچه زمانی، مورد بررسی قرار گرفته است. همچنین میزان اثرات مودهای بالاتر در پارامترهای پاسخ‌ سازه‌ای نیز با در نظرگیری ساختارهای بارگذاری ترتیب ‌یافته از سه حالت محاسباتی با مشارکت 1 ،3 و 5 مود اول انتقالی سنجیده می‌شود. در این پژوهش، معیارسازی تغییر مکان هدف در تحلیل‌های پوش‌آور بر اساس نتایج حاصل از آنالیزهای دینامیکی غیرخطی تاریخچه زمانی تحت دو گروه رکوردهای حوزه‌ نزدیک و حوزه‌ دور صورت گرفته است. دامنه تغییرات پارامترهای پاسخ سه سازه بلند ‌مرتبه قاب محیطی خمشی فولادی 30 طبقه با پیکربندی همسان اسکلت مقاوم، بر اساس انجام یک سری تحلیل‌های غیرخطی استاتیکی مودال پوش‌آور و نیز دینامیکی تاریخچه زمانی، ارزیابی شده است. مدل 1 به عنوان ساختار پایه دارای سیستم مقاوم قاب خمشی محیطی با یک پیکربندی دو لایه متشکل از پانل­‌های با اتصالات صلب است. مد‌ل­‌های 2 و 3 با چیدمان­‌های چند طبقه‌­ای المان­‌های زیپر بزرگ ‌مقیاس بر روی اسکلت مدل پایه، به ترتیب با اتصال (در دو حالت) به یک و نیز دو ستون در طبقه همکف معرفی می­‌شوند. چیدمان و آرایش چند طبقه‌­ای المان­‌های زیپر بزرگ ‌مقیاس با هدف جلوگیری از تشکیل مکانیزم گسترش ­یافته پلاستیک و پرهیز از وقوع وضعیت احتمالی کمانش در ستون­‌های طبقات تحتانی می­‌باشد. آورده‌های محاسباتی حاصل از تحلیل‌های مودال پوش‌آور با نتایج حاصل از تحلیل‌های تاریخچه‌ زمانی غیرخطی به عنوان مقادیر دقیق، مقایسه شده و درصد خطای استاندارد برآورد شده است. ارزیابی نتایج این مطالعه نشان ‌دهنده قابلیت محاسباتی به نسبت مطلوب برای روش پوش‌آور مودال در پیش‌بینی مشخصات رفتار سازه‌های بلند مرتبه، با اسکلت مقاوم متقارن و منظم در پلان و ارتفاع است. ملاحظه شد که تعبیه المان‌‌های زیپر بزرگ‌ مقیاس در پیکره قاب محیطی خمشی، سبب کاهش نسبی پارامترهای پاسخ لرزه‌ای غیرخطی و نیز افزایش قابلیت پایداری دینامیکی اسکلت مقاوم سازه بلند مرتبه می‌شود. مقایسه نتایج مربوط به سه مدل مطالعاتی در این تحقیق نشان می‌دهد که حضور المان‌های زیپر بزرگ مقیاس، تاثیرات مودهای بالاتر در محاسبه بارگذاری معیارسازی شده برای تحلیل‌های پوش‌آور مودال را دچار کاهش نسبی نموده و نیز تفاوت در پیکربندی و چیدمان هندسی المان‌های مذکور، تاثیر ناچیزی در پارامترهای پاسخ خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analytical Extension of Higher Modes Participation in The Estimation of Seismic Response of Tall Hybrid Framed Tube Structures comprising Mega Zipper Elements

نویسندگان [English]

  • Mahboobeh Aboutalebi 1
  • Jafar Jafar Keyvani 3
1 A
3 Kharazmi University
چکیده [English]

This paper presents a computational approach to the analytical performance of the modal pushover method (MPA) in predicting nonlinear response parameters of tall buildings comprising hybrid framed tube with large-scale zipper elements. The accuracy of the results based on MPA is evaluated by comparing the benchmark responses obtained through conducting two sets of nonlinear time history analyses (NLRHA). Also, the effects of higher modes on the structural response parameters are measured by considering three computational vectors of the ordered lateral loading prepared according to the participation of the basic mode, as well as the first 3 and 5 transitional modes, separately. In this study, the determination of the target displacement in MPA was set based on the results of NLRHA under two groups of near and far-field records. The variation range of response parameters of the three high-rise 30-story studied structures was evaluated based on conducting a series of MPA as well as NLRHA analyses. The structural system of the first studied model is a combined framed tube structure. The second and third introduced studied models contain a multi-story arrangement of large-scale zipper elements on the basic skeleton by connecting the aforementioned zipper elements to the columns on the ground floor. The multi-story arrangement of large-scale zipper elements has been aimed at preventing the formation of an intensive expanded plastic mechanism and avoiding the possible buckling mode in the columns of the lower floors. The computational outputs of the MPA are compared with the results of the NLRHA (as exact values) and the standard error percentage is estimated. Evaluation of the results presented in this study demonstrates the relatively desirable computational capability of the MPA method in predicting the behavior characteristics of tall building structures with a symmetric and regular rigid skeleton at plan and height. Moreover, it was observed that the presence of large-scale zipper elements in the resistant system could reduce the seismic response parameters and also relatively increases the overall dynamic stability of the high-rise structural skeleton.

کلیدواژه‌ها [English]

  • Nonlinear Analysis
  • Modal Pushover
  • Higher Modes
  • Tall Building
  • Near and Far-field Records
[1] H. Kerawinkler, Importance of good nonlinear analysis, The Structural Design of Tall and Special Buildings, 15(5) (2006) 515-531.
[2] A. Tenchini, M. D'Aniello, C. Rebelo, R. Landolfo, L.S. Da-Silva, L. Lima, Seismic performance of dual-steel moment resisting frames, Journal of Constructional Steel Research, 101 (2014) 437-454.
[3] M.H. Vafaee, H. Saffari, A modal shear-based pushover procedure for estimating the seismic demands of tall building structures, Soil Dynamics and Earthquake Engineering, 92 (2017) 95-108.
[4] M. Poursha, F. Khoshnoudian, A.S. Moghadam, Assessment of modal pushover analysis and conventional nonlinear static procedure with load distributions of federal emergency management agency for high-rise buildings", The Structural Design of Tall and Special Buildings, 19 (2010) 291-308.
[5] M.H. Vafaee, H. Saffari, Evaluation of the higher modes contribution in the seismic demands of buildings subjected to far-field and near-field ground motions, Asian Journal of Civil Engineering (BHRC) 18(5) (2016) 719-746.
[6] E. Kalkan, S.K. Kunnath, Assessment of current nonlinear static procedures for seismic evaluation of buildings, Engineering Structures, 29(3) (2007) 305-316.
[7] M. Poursha, F. Khoshnoudian, A.S. Moghadam, A consecutive modal pushover procedure for estimating the seismic demands of tall buildings, Engineering Structures, 31(2) (2009) 591-599.
[8] S. Mukhopadhyay, V.K. Gupta, Directivity pulses in near-fault ground motions—II: Estimation of pulse parameters, Soil Dynamics and Earthquake Engineering, 50 (2013) 38-52.
[9] S. Mukhopadhyay, V.K. Gupta, Directivity pulses in near-fault ground motions—I: Identification, extraction and modeling, Soil Dynamics and Earthquake Engineering, 50 (2013) 1-15.
[10] E. Kalkan, S.K. Kunnath, Effects of fling step and forward directivity on seismic response of buildings, Earthquake Spectra, 22(2) (2006) 367-390.
[11] J.F. Hall, Seismic response of steel frame buildings to near‐source ground motions, Earthquake Engineering and Structural Dynamics, 27(12) (1998) 1445-1464.
[12] J.D. Bray, A. Rodriguez-Marek, Characterization of forward-directivity ground motions in the near-fault region, Soil Dynamics and Earthquake Engineering, 24(11) (2004) 815-828.
[13] M. Poursha, E.T. Samarin, The modified and extended upper-bound (UB) pushover method for the multi-mode pushover analysis of unsymmetric-plan tall buildings, Soil Dynamics and Earthquake Engineering, 71 (2015) 114-127.
[14] M. Poursha, F. Khoshnoudian, A.S. Moghadam, The extended consecutive modal pushover procedure for estimating the seismic demands of two-way unsymmetric-plan tall buildings under influence of two horizontal components of ground motions, Soil Dynamics and Earthquake Engineering, 63 (2014) 162-173.
[15] M. Poursha, M.A. Amini, A single-run multi-mode pushover analysis to account for the effect of higher modes in estimating the seismic demands of tall buildings, Bulletin of Earthquake Engineering, 13(8) (2015) 2347-2365.
[16] S.F. Ghahari, H.R. Moradnejad, M.S. Rouhanimanesh, A. Sarvghad-Moghadam, Studying higher mode effects on the performance of nonlinear static analysis methods considering near-fault effects, KSCE Journal of Civil Engineering, 17(2) (2013) 426-437.
[17] M. Ferraioli, Multi-mode pushover procedure for deformation demand estimates of steel moment-resisting frames, International Journal of Steel Structures, 17(2) (2017) 653-676.
[18] A.K. Chopra, R.K. Goel, A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings, Earthquake Engineering and Structural Dynamics, 33(8) (2004) 903-927.
[19] A.K. Chopra, R.K. Goel, A modal pushover analysis procedure for estimating seismic demands for buildings, Earthquake Engineering and Structural Dynamics, 31(3) (2002) 561-582.
[20] Iranian National Building Code (INBC), Steel Structures, Issue 10, National Building Regulations Office, Tehran, Iran, 2014.
[21] Iranian National Building Code (INBC), Design Loads for Buildings, Issue 6, National Building Regulations Office,  Tehran, Iran, 2014.
[22]  Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800, 4th edn., Building and Housing Research Center (BHRC), Tehran, Iran, 2014.
[23] FEMA P-695, Quantification of Building Seismic Performance Factors. Washington, D.C., Federal Emergency Management Agency, 2009.
[24] FEMA 356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management, 1998.
[25] SAP 2000, Integrated Software for Structural Analysis and Design. Computers & Structures Institue (CSI), Berkeley, California
[26] A.Y. Rahmani, N. Bourahla, R. Bento, M. Badaoui, Adaptive upper-bound pushover analysis for high-rise moment steel frames, Structures, 20 (2019) 912–923, https://doi.org/10.1016/j.istruc.2019.07.006
[27] M. Guan, W. Liu, H. Du, J. Cui, J. Wang, Combination model for conventional pushover analysis considering higher mode vibration effects, The Structural Design of Tall and Special Buildings, 28(12) (2019), DOI: 10.1002/tal.1625
[28] ASCE / SEI 41-13, Seismic Evaluation and Retrofit of Existing Buildings, 2014.
[29] PEER Report 2017/06, Guidelines for Performance Based Seismic Design of Tall Buildings, Report as part of the Tall Buildings Initiative, University of California, Berkeley, 2017.
[30]  PEER Ground Motion Database, California, http://peer.berkeley.edu/
[31] R. Puglia, E. Russo, L. Luzi, M. D’Amico, C. Felicetta, F. Pacor, G. Lanzano, Strong-motion processing service: a tool to access and analyze earthquakes strong-motion waveforms, Bulletin of Earthquake Engineering (Springer), 16(7) (2018) 2641-2651.
[32] R. Guidotti, A. Castellani, M. Stupazzini, Nearfield earthquake strong ground motion rotations and their relevance on tall buildings, Bulletin of the Seismological Society of America, 108(3A) (2018) 1171-1184.
[33] S. Etli, E.M. Güneyisi, Response of steel buildings under near and far field earthquakes, Civil Engineering Beyond Limits, Turkey, 2 (2020) 24-30.
[34] H.Y. Chang, C.K. Chiu, Uncertainty assessment of field weld connections and the related effects on service life of steel buildings, Structure and Infrastructure Engineering (Maintenance, Management, Life-Cycle Design and Performance), (2019) DOI: 10.1080/15732479.2019.1621906
[35] S. Narayan, M.K. Shrimali, S.D. Bharti, T.K. Datta, Collapse of damaged steel building frames because of earthquakes, Journal of Performance of Constructed Facilities (ASCE), (2018) DOI: 10.1061/(ASCE)CF.1943-5509.0001125.
[36] FEMA 440, Improvement of Nonlinear Static Seismic Analysis Procedures, Applied Technology Council (ATC-55 Project), 2005.