پیش‌بینی مقاومت فشاری بتن‌های معمولی، حاوی خاکستر بادی و سرباره بر اساس روش‌‌های نوین و ارائه طرح مخلوط‌های بهینه آن‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشگاه امیرکبیر، تهران، ایران

3 دانشجو، دانشکده مهندسی عمران و محیط زیست دانشگاه علم و صنعت، تهران، ایران

4 دانشگاه صنعتی امیر کبیر

چکیده

در این مطالعه، چهار دسته بتن شامل خاکستر بادی، خاکستر بادی و سرباره، بتن معمولی و بتن حاوی سرباره مورد بررسی قرار گرفته ‌است و با استفاده از دو روش یادگیری ماشین معرفی شده (الگوریتم ژنتیک و رقابت لیگ فوتبال) و چهار روش رگرسیونی، مقاومت فشاری بتن‌های مذکور پیش‌بینی شده ‌است. با استفاده از شاخص‌های آماری دقت هر مدل برآورد شده و با دقت‌ترین مدل برای هر دسته بتن معرفی شده است و از آن برای حل مسئله بهینه‌سازی استفاده شد. روش یادگیری ماشین مبتنی بر رقابت لیگ فوتبال برای هر چهار دسته بتن به جز بتن معمولی از دقت بالاتری برخوردار بود و برای بتن معمولی روش یادگیری ماشین مبتنی بر الگوریتم ژنتیک به عنوان بهترین مدل معرفی گردید. هدف از مسئله ‌بهینه‌سازی کمینه کردن هزینه هر دسته بتن با در نظر گرفتن مقاومت بتن 40 مگاپاسکالی بوده است. بتن حاوی خاکستر ‌بادی، خاکستر بادی و سرباره و همچنین بتن حاوی سرباره نسبت به بتن معمولی به ترتیب 35/2، 29/9 و 23/1 درصد نسبت به بتن معمولی هزینه ساخت را کاهش می‌دهند. تولید سیمان یکی از عوامل آلودگی محیط ‌زیست می‌باشد. بتن حاوی خاکستر ‌بادی، خاکستر بادی و سرباره، بتن حاوی سرباره و بتن معمولی به ترتیب 217/25، 150/47، 102 و 414/64 کیلوگرم بر مترمکعب سیمان در طرح مخلوط بهینه مورد استفاده قرار گرفتند. که بتن شامل سرباره، کمترین مقدار مصرف سیمان برای بتنی با مقاومت 40 مگاپاسکال را در بین 4 دسته بتن دارد و حدود 75/4 درصد نسبت به بتن معمولی مصرف سیمان را کاهش داده ‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Compressive strength prediction of ordinary concrete, fly ash concrete, and slag concrete by novel techniques and presenting their optimal mixtures

نویسندگان [English]

  • Mehrdad Ehsani 1
  • Hamed Naseri 2
  • Ruhollah Saeedi Nezhad 1
  • Mohammadali Etebari Ghasbeh 3
  • Fereidoon Moghadas Nejad 4
1 Amirkabir University of Technology, Tehran, Iran
2 Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran.
3 Graduate student, Department of Civil Engineering, Iran University of Science and Technology
4 Dep. of Civil Engineering, Amirkabir University of Technology
چکیده [English]

In this study, four concrete types, including ordinary Portland cement concrete, fly ash concrete, slag concrete, and slag-fly ash concrete, are taken into account in order to estimate their compressive strength by two novel machine learning methods (genetic algorithm and soccer league competition algorithm), and four types of regressions (linear, 2nd order polynomial, exponential, and logarithmic). Subsequently, the precision of prediction models is compared based on performance indicators, and the most accurate models are applied in the optimization problem modeling. Drawing on results, the most precise model to estimate the compressive strength of ordinary Portland cement concrete is the genetic algorithm, and the soccer league competition is the most accurate model to estimate the strength of other concrete types. Afterward, a model is developed so as to design mixture proportions of 40MPa concretes. Fly ash concrete, slag-fly ash concrete, and slag concrete reduce the unit cost by 35.2%, 29.9%, and 23.1%, respectively, compared with ordinary Portland cement concrete. Fly ash concrete, slag-fly ash concrete, slag concrete, and ordinary Portland cement concrete require 217.25 kg, 150.47 kg, 102 kg, and 414.64 kg cement to be manufactured. Furthermore, slag concrete can reduce the amount of cement in the mixture proportion by 75.4%, and it is the most eco-friendly concrete.

کلیدواژه‌ها [English]

  • Compressive strength prediction
  • Mixture design optimization
  • Machine learning
  • Regression
  • Metaheuristic algorithms
[1] P.K. Mehta, Reducing the environmental impact of concrete, Concrete international, 23(10) (2001) 61-66.
[2] A.M. Rashad, An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads, Journal of Cleaner Production, 87 (2015) 735-744.
[3] R. Feiz, J. Ammenberg, L. Baas, M. Eklund, A. Helgstrand, R. Marshall, Improving the CO2 performance of cement, part I: utilizing life-cycle assessment and key performance indicators to assess development within the cement industry, Journal of Cleaner Production, 98 (2015) 272-281.
[4] S. Ghavami, B. Farahani, H. Jahanbakhsh, F. Moghadas Nejad, Effects of silica fume and nano-silica on the engineering properties of kaolinite clay, AUT Journal of Civil Engineering, 2(2) (2018)135-142).
[5] F.M. Nejad, M. Habibi, P. Hosseini, H. Jahanbakhsh, Investigating the mechanical and fatigue properties of sustainable cement emulsified asphalt mortar, Journal of Cleaner Production, 156 (2017) 717-728.
[6] E.E. Ali, S.H. Al-Tersawy, Recycled glass as a partial replacement for fine aggregate in self compacting concrete, Construction and Building Materials, 35 (2012) 785-791.
[7] M.H. Shehata, M.D. Thomas, The effect of fly ash composition on the expansion of concrete due to alkali–silica reaction, Cement and Concrete Research, 30(7) (2000) 1063-1072.
[8] R. Siddique, Performance characteristics of high-volume Class F fly ash concrete, Cement and Concrete Research, 34(3) (2004) 487-493.
[9] Compressive strength and hydratio E.A. Koenders, M. Pepe, E. Martinelli, processes of concrete with recycled aggregates, Cement and Concrete Research, 56 (2014) 203-212.
[10] M.M. Khotbehsara, B.M. Miyandehi, F. Naseri, T. Ozbakkaloglu, F. Jafari, E. Mohseni, Effect of SnO2, ZrO2, and CaCO3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash: Experimental observations and ANFIS predictions, Construction and Building Materials, 158 (2018) 823-834.
[11] I.-C. Yeh, Modeling of strength of high-performance concrete using artificial neural networks, Cement and Concrete research, 28(12) (1998) 1797-1808.
[12] I.-C. Yeh, Design of high-performance concrete mixture using neural networks and nonlinear programming, Journal of Computing in Civil Engineering, 13 (1999) 36-42.
[13] F. Özcan, C.D. Atiş, O. Karahan, E. Uncuoğlu, H. Tanyildizi, Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete, Advances in Engineering Software (2009) 865-863.
[14] A. Behnood, E.M. Golafshani, Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves, Journal of cleaner production, 202 (2018) 54-64.
[15] T. Kim, J.M. Davis, M.T. Ley, S. Kang, P. Amrollahi, Fly ash particle characterization for predicting concrete compressive strength, Construction and Building Materials, 165 (2018) 560-571.
[16] H. Naseri, H. Jahanbakhsh, F. Moghadas Nejad, Developing a novel machine learning method to predict the compressive strength of fly ash concrete in different ages, AUT Journal of Civil Engineering,  (2019).
[17] M. Mirzahosseini, P. Jiao, K. Barri, K.A. Riding, A.H. Alavi, New machine learning prediction models for compressive strength of concrete modified with glass cullet, Engineering Computations,  (2019).
[18] J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press, 1992.
[19] H. Naseri, M.A.E. Ghasbeh, Time-cost trade off to compensate delay of project using genetic algorithm and linear programming, Int J Innov Manag Technol, 9(6) (2018).
[20] N. Moosavian, B.K. Roodsari, Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks, Swarm and Evolutionary Computation, 17 (2014) 14-24.
[21] A. Committee, Guide for Selecting Proportions for No-Slump Concrete Reported by ACI Committee 211, in:  American Concrete Institute, 2002, pp. 1-26.
[22] L. Assi, K. Carter, E.E. Deaver, R. Anay, P. Ziehl, Sustainable concrete: building a greener future, Journal of cleaner production, 198 (2018) 1641-1651.
[23] H.S. Müller, M. Haist, M. Vogel, Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime, Construction and Building Materials, 67 (2014) 321-337.
[24] B. Chiaia, A.P. Fantilli, A. Guerini, G. Volpatti, D. Zampini, Eco-mechanical index for structural concrete, Construction and Building Materials, 67 (2014) 386-392.
[25] E.R. Grist, K.A. Paine, A. Heath, J. Norman, H. Pinder, The environmental credentials of hydraulic lime-pozzolan concretes, Journal of Cleaner production, 93 (2015) 26-37.
[26] P. Pineda, A. García-Martínez, D. Castizo-Morales, Environmental and structural analysis of cement-based vs. natural material-based grouting mortars. Results from the assessment of strengthening works, Construction and Building Materials 138 (2017) 528-547.
[27] K. Wille, C. Boisvert-Cotulio, Material efficiency in the design of ultra-high performance concrete, Construction and Building Materials, 86 (2015) 33-43.
[28] H. Naseri, H. Jahanbakhsh, P. Hosseini, F.M. Nejad, Designing sustainable concrete mixture by developing a new machine learning technique, Journal of Cleaner Production, 258 (2020) 120578
[29] P. Ziolkowski, M. Niedostatkiewicz, Machine learning techniques in concrete mix design, Materials, 12(8) (2019) 1256.
[30] E.M. Golafshani, A. Behnood, Estimating the optimal mix design of silica fume concrete using biogeography-based programming, Cement and Concrete Composites, 96 (2019) 95-105.
[31] O. Sengul, M.A. Tasdemir, Compressive strength and rapid chloride permeability of concretes with ground fly ash and slag, Journal of materials in civil engineering, 21(9) (2009) 494-501.