تأثیر عدم قطعیت ظرفیت بر تخمین منحنی خطر تقاضای لرزه‌ای قاب‌‌های خمشی فولادی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 Malayer University, Malayer, Hamedan, Iran

2 دانشگاه ملایر

3 گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد شوشتر

چکیده

برآورد احتمالاتی تقاضای لرزه­ای قاب­های خمشی فولادی با عدم قطعیت همراه می‌­باشد. مهم‌ترین عوامل عدم قطعیت شامل عدم قطعیت ذاتی ناشی از به­ کار­گیری رکوردهای گوناگون زلزله و همچنین عدم قطعیت سیستمی ظرفیت ناشی از پارامترهای مدل رفتاری است. عدم قطعیت اول در قالب استفاده از تعداد قابل قبولی از رکوردهای مختلف زلزله قابل ‌اعمال می­‌باشد. عدم قطعیت ظرفیت به دلیل ماهیت تقریبی پارامترهای استفاده شده جهت تعریف مدل رفتاری که بر مبنای ارائه روابط تجربی و نتایج آزمایشگاهی به دست آمده است، به وجود می­‌آید. در مطالعه حاضر یک قاب خمشی فولادی 20 طبقه در دو حالت مدل غیرقطعی و پایه به ترتیب با و بدون در نظر گرفتن عدم قطعیت ظرفیت مورد بررسی قرار گرفته است. روش اعمال عدم قطعیت پارامترهای مدل رفتاری از طریق ایجاد متغیرهای تصادفی در بازه تعریف شده به روش مونت کارلو صورت گرفته است. بر مبنای نتایج تحلیل دینامیکی فزاینده صورت گرفته برای هر دو مدل پایه و غیرقطعی، منحنی خطر تقاضای لرزه برای کل محدوده شاخص تقاضا شامل حالات حدی قابلیت استفاده بی‌وقفه و آستانه فروریزش استخراج و مورد مقایسه قرار گرفته است. همچنین به منظور ارزیابی میزان تأثیرپذیری بسامد سالانه حدی مدل دارای عدم قطعیت ظرفیت ناشی از تغییرات پارامترهای منحنی­‌های شکنندگی و خطر لرزه تحلیل حساسیت بر مبنای کمیت­‌های فوق صورت گرفته است. نتایج حاصله دلالت بر تأثیر معنی‌دار و غیر قابل ‌چشم‌پوشی عدم قطعیت ظرفیت بر بسامد سالانه حالت حدی آستانه فروریزش دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Capacity Uncertainty on the Seismic Hazard Demand Curve Estimation of Steel-Moment Resisting Frames

نویسندگان [English]

  • Behzad Shokrollahi-Yancheshmeh 1
  • Amin Mohebkhah 2
  • Mehdi Mahdavi Adeli 3
1 Malayer University, Malayer, Hamedan, Iran
2 Malayer University, Malayer, Hamedan, Iran
3 Department of Civil Engineering, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
چکیده [English]

Probabilistic seismic demand assessment of steel moment-resisting frames is associated with uncertainty. The most important factors of uncertainty include the inherent uncertainty caused by the record-to-record variability, as well as the epistemic capacity uncertainty due to the model parameters. The first uncertainty can be applied in the form of using an acceptable number of different ground motion records. Capacity uncertainty arises due to the approximate nature of the parameters used to define the structural model behavior which is based on the experimental relationships derived from laboratory results. In the present study, a 20-story steel moment-resisting frame in two cases of uncertain and base model has been investigated with and without considering the capacity uncertainty, respectively. The method of applying such uncertainty has been done by generating random variables in the defined range by Monte Carlo simulation. Based on the results of the incremental dynamic analysis performed for both base and uncertain models, the seismic hazard demand curves for the entire range of demand parameters including limit states of immediate occupancy and collapse prevention has been extracted and compared. Also, in order to evaluate the influence of the fragility and seismic hazard curves parameters on the variation of the mean annual frequency of limit state of the uncertain model, sensitivity analysis based on the above-mentioned quantities has been done. The results indicate the significant effect of capacity uncertainty on increasing the mean annual frequency at the collapse prevention limit state.

کلیدواژه‌ها [English]

  • Steel moment-resisting frames
  • Capacity uncertainty
  • Seismic hazard demand curve
  • Fragility curve
  • Probabilistic seismic demand assessment
[1] M. Shinozuka, Monte Carlo solution of structural dynamics, Computers & Structures, 2(5-6) (1972) 855-874.
[2] G. Arizaga, Earthquake induced damage estimation for steel buildings in Puerto Rico, University of Puerto Rico,  (2006).
[3] A.T. Council, Quantification of building seismic performance factors, US Department of Homeland Security, FEMA, 2009.
[4] D. Vamvatsikos, C.A. Cornell, Incremental dynamic analysis, Earthquake engineering & structural dynamics, 31(3) (2002) 491-514.
[5] D. Vamvatsikos, M. Fragiadakis, Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty, Earthquake engineering & structural dynamics, 39(2) (2010) 141-163.
[6] L. Ibarra, H. Krawinkler, Variance of collapse capacity of SDOF systems under earthquake excitations, Earthquake engineering & structural dynamics, 40(12) (2011) 1299-1314.
[7] D. Vamvatsikos, Seismic performance uncertainty estimation via IDA with progressive accelerogram-wise latin hypercube sampling, Journal of Structural Engineering, 140(8) (2014) A4014015.
[8] B. Asgarian, B. Ordoubadi, Effects of structural uncertainties on seismic performance of steel moment resisting frames, Journal of Constructional Steel Research, 120 (2016) 132-142.
[9] A. Hajishabanian, K. Laknejadi, P. Zarfam, Performance based design optimization of steel moment resisting frames incorporating seismic demand and connection parameters uncertainties, Iran University of Science & Technology, 9(4) (2019) 575-597.
[10] K. Mehdizadeh, A. Karamodin, Investigation of the Effect of Uncertainty of the Ibara-Madina-krawinkler Model Parameters on Seismic Collapse Capacity in Steel Moment Resisting Frames, journal of Structural and Construction Engineering, 6(2) (2019) 18. (in Persian)
[11] D. Skoulidou, X. Romão, Uncertainty quantification of fragility and risk estimates due to seismic input variability and capacity model uncertainty, Engineering Structures, 195 (2019) 425-437.
[12] F. Barbagallo, M. Bosco, E. Marino, P. Rossi, Variable vs. invariable elastic response spectrum shapes: impact on the mean annual frequency of exceedance of limit states, Engineering Structures, 214 (2020) 110620.
[13] A. Mathiasson, R.A. Medina, Seismic collapse assessment of a 20-story steel moment-resisting frame structure, Buildings, 4(4) (2014) 806-822.
[14] M. Mahdavi Adeli, Determination of site uniform hazard and design spectra Amirkabir University, Iran 2004.(in Persian)
[15] A. Committee, Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10), Structural Engineering Institute, American Society of Civil Engineering, Reston, Virginia,  (2010).
[16] L.F. Ibarra, R.A. Medina, H. Krawinkler, Hysteretic models that incorporate strength and stiffness deterioration, Earthquake engineering & structural dynamics, 34(12) (2005) 1489-1511.
[17] D.G. Lignos, H. Krawinkler, Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading, Journal of Structural Engineering, 137(11) (2011) 1291-1302.
[18] F. McKenna, OpenSees: a framework for earthquake engineering simulation, Computing in Science & Engineering, 13(4) (2011) 58-66.
[19] P. Center, PEER ground motion database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, http://ngawest2. berkeley. edu,  (2013).
[20] B.S.S. Council, NEHRP recommended seismic provisions for new buildings and other structures (FEMA P-750), Washington, DC: Federal Emergency Management Agency,  (2009).
[21] R.A. Medina, H. Krawinkler, Seismic demands for nondeteriorating frame structures and their dependence on ground motions, Pacific Earthquake Engineering Research Center Berkeley, 2004.
[22] R. Hamburger, J. Hooper, T. Sabol, R. Shaw, L. Reaveley, R. Tide, Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings (FEMA 350), in, Federal Emergency Management Agency, 2000.
[23] D. Lignos, H. Krawinkler, Sidesway collapse of deteriorating structural systems under seismic excitations. Rep. No. TB 177, The John A. Blume Earthquake Engineering Research Center, in, Stanford Univ., Stanford, CA, 2012.
[24] F. Jalayer, C.A. Cornell, A technical framework for probability-based demand and capacity factor (DCFD) seismic formats.” RMS,  (2003).
[25] N. Luco, C.A. Cornell, Seismic drift demands for two SMRF structures with brittle connections, Structural Engineering World Wide,  (1998).