بررسی عملکرد سیستم‌های قاب با ستون پیوند شده (LCF) طراحی شده به روش مستقیم مبتنی بر تغییرمکان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی عمران و معماری، دانشگاه ملایر، ملایر، ایران

2 دانشگاه ملایر

چکیده

سیستم قاب فولادی با ستون پیوند شده (LCF) یک سیستم باربر جدید است؛ که با بهره‌گیری از تیرهای پیوند شکل‌پذیر دارای رفتار سازه‌ای مطلوب در سطوح عملکردی مختلف می‌باشد. روش طراحی مستقیم براساس تغییرمکان (DDBD) یکی از روش‌های توانمند طراحی سازه‌ها براساس عملکرد است که توانایی کنترل رفتار سازه را دارد. هدف از این مطالعه، بررسی عملکرد سیستم‌های قاب با ستون پیوند شده طراحی شده به روش مستقیم مبتنی بر تغییرمکان است. برای این منظور، در مجموع ۸ نمونه قاب ۳، ۶، ۹ و ۱۲ طبقه با پیکربندی مختلف، با روش مستقیم مبتنی بر تغییرمکان طراحی شده‌ و سپس رفتار آن‌ها به وسیله تحلیل استاتیکی غیرخطی (بار افزون) مورد بررسی قرار گرفت. نتایج به دست آمده نشان داد که به ازای برش پایه طراحی محاسبه شده در روش DDBD، تقریباً اکثر تیرهای پیوند سازه‌های مورد بررسی تسلیم شدند؛ در حالی که تمام تیرهای قاب خمشی تعدیل یافته بصورت الاستیک باقی ماندند. این امر بیانگر توانایی روش DDBD در کنترل رفتار سیستم‌های LCF است. نتایج بررسی اضافه مقاومت سازه‌های مورد بررسی نیز حاکی از این است که اضافه مقاومت سیستم‌های LCF طراحی شده بر مبنای تغییرمکان، وابسته به ارتفاع، پیکربندی و ملاحظات اجرایی بوده و مقدار متوسط این ضریب 1/23 بدست آمد. همچنین در طی بررسی‌های صورت گرفته، متوسط ضریب اضافه مقاومت ذاتی نمونه سازه‌ها مقدار 0/48 محاسبه شد؛ که نشان‌دهنده توانایی مناسب سیستم‌های LCF طراحی شده بر مبنای تغییرمکان در رسیدن به مکانیزم گسیختگی مطلوب است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Direct Displacement-based Designed Linked Column Steel Frame (LCF) Systems

نویسندگان [English]

  • Javad Tazarv 1
  • Amin Mohebkhah 2
1 Dept. of Civil Engineering, Faculty of Civil and Architectural Eng., Malayer University, Malayer, Iran.
2 Malayer University, Malayer, Hamedan, Iran
چکیده [English]

The linked column steel frame (LCF) system is a new load resistant system; that by using replaceable ductile links, it can provide the desired structural behavior. The optimal performance of this system can be achieved by controlling the displacements and the sequence of yielding fuses in the structure. The direct displacement-based design (DDBD) method is one of the most powerful performance-based design methods that can control the behavior of a structure. This study aims to investigate the performance of LCF systems designed by the DDBD method. For this purpose, 8 sample structures with 3, 6, 9, and 12 stories and with different configurations, were designed with the DDBD method; and then their behavior was investigated by nonlinear static analysis. The results showed that in the design base shear calculated with the DDBD method, nearly most of the links of the studied structures were yielded; while all the beams of the modified moment frame remained elastic. This result shows the ability of the DDBD method to design LCF systems with controlled behavior. The results of the overstrength review of the studied structures also indicated that the overstrength of LCF systems designed with the DDBD method depends on the height and configuration. The average value of this coefficient was evaluated as 1.23. Also, the average inherent overstrength coefficient of the structural samples was calculated as 0.48. This result indicates the ability of the LCF systems designed by the DDBD method to achieve their desired failure mechanism.

کلیدواژه‌ها [English]

  • Linked column frame system
  • Direct displacement-based design
  • Performance objects
  • Overstrength
  • Nonline-ar static analysis
[1] T. J. Maley, T. J. Sullivan, and G. D. Corte, Development of a displacement-based design method for steel dual systems with buckling-restrained braces and moment-resisting frames, Journal of Earthquake Engineering, 14(S1) (2010) 106-140.‏
[2] K. C. Tsai, H. Y. Wang, C. H. Chen, G. Y. Liu, and K. J. Wang, Substructure pseudo dynamic performance of hybrid steel shear panels, Steel Structures, 1 (2001) 95-103.
[3] P. Dusicka, R. Iwai, Development of linked column frame system for seismic lateral loads, In Structural engineering research frontiers, (2007) 1-13.
[4] M. Malakoutian, J. W. Berman, and P. Dusicka, Seismic response evaluation of the linked column frame system, Earthquake Engineering & Structural Dynamics, 42(6) (2013) 795–814.
[5] M. Malakoutian, J. W. Berman, P. Dusicka, and A. Lopes, Quantification of Linked Column Frame Seismic Performance Factors for Use in Seismic Design, Journal of Earthquake Engineering, 20(4) (2016) 535–558.
[6] A. Lopes, P. Dusicka and J. Berman, Linked Column Frame Steel System Performance Validation using Hybrid Simulation, Proc. of 10th US National Conference on Earthquake Engineering, Anc, Alaska, (2014).
[7] A. Lopes, Seismic Behavior and Design of the Linked Column Steel Frame System for Rapid Return to Occupancy, Ph.D. partial fulfillment, Civil and Environmental Engineering Dept., Portland State University, Oregon, USA, (2016).
[8] S. Shoeibi, MA. Kafi, and M. Gholhaki, New Performance Based Seismic Design Method for Structures with Structural Fuse System, Engineering Structures, (132) (2017) 745-760.
[9] S. Shoeibi, MA. Kafi, and M. Gholhaki, Performance Based Seismic Design and Parametric Assessment of Linked Column Frame System, Periodical Polytechnic Civil Engineering, (62) (2018) 555-569.
[10] V. Jaberi, A. Asghari, Evaluation of Seismic Response of Linked Column with Simple Frame System. Modares Civil Engineering journal, 19(6) (2020) 41-58. (In Persian).
[11] A. Ezoddin, A. Kheyroddin, and M. Gholhaki, Investigation of the Effects of Link Beam Length on the RC Frame Retrofitted with the Linked Column Frame System, Civil Engineering Infrastructures Journal, 53(1) (2020) 137-159.
[12] M.J.N. Priestley, G.M. Calvi, and M.J. Kowalski, Displacement based seismic design of structures, IUSS Press, Pavia, Italy, 2007.
[13] T.J. Sullivan, The current limitations of displacement based design, MSc Dissertation, European School of Advanced Student in Reduction of Seismic Risk (Rose School), University of Pavia, Italy, (2002).
[14] T. J. Sullivan, T. Maley, and G. Calvi, Seismic response of steel moment resisting frames designed using a Direct DBD procedure, In 8th International Conference on Structural Dynamics, (2011).
[15] K. K. Wijesundara, Seismic design of steel concentric braced frame structures using direct displacement based design approach, South Asian Institute of Technology and Medicine P.O Box 11, Millennium Drive, Malabe, Sri Lanka, (2012).
[16] T. J. Sullivan, Direct displacement-based seismic design of steel eccentrically braced frame structures, Bulletin of Earthquake Engineering, 11(6) (2013) 2197-2231.
[17] T. J. Sullivan, M. J. N. Priestley, and G. M. Calvi, Direct displacement-based design of frame-wall structures, Journal of Earthquake Engineering, 10(spec01) (2006) 91-124.
[18] J. Tazarv, Direct displacement-Based Seismic Design of Steel Linked Column Frame Structures, MSc Dissertation, Civil Engineering Dept., University of Malayer, Malayer, Iran, (2020). (In Persian).
[19] S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, Open System for Earthquake Engineering Simulation User Command-Language Manual - OpenSees Version 3.0.3, Pacific Earthquake Engineering Research Center, University of California, Berkeley, Berkeley, CA. Avaliable Online at http://www.opensess.berkeley.edu, (2016).
[20] AISC, Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16, American Institute of Steel Construction, Chicago, IL, 2016.
[21] FEMA 356, Pre-standard and Commentary for Seismic Rehabilitation of Buildings, In Federal Emergency Management Agency, Washington DC, USA, 2000.
[22] BHRC-2800, Iranian code of practice for seismic resistant design of buildings: Standard No. 2800, 4th ed., Tehran: Road, Housing and Urban Development Research Center, 2014. (In Persian).
[23] T. J. Sullivan, M. J. N. Priestley, and G. M. Calvi, Seismic Design of Frame-Wall Structures, IUSS Press, Pavia, Italy, 2006.
[24] D. N. Grant, C. A. Blandon, and M. J. N. Priestley, Modelling Inelastic Response in Direct Displacement-Based Design, Report 2005/3, IUSS Press, Pavia, Italy, 2005.
[25] A. S. Elnashai, A. M. Mwafy, Over strength and force reduction factors of multistorey reinforced‐concrete buildings, The structural design of tall buildings, 11(5) (2002) 329-351.
[26] CEN, Eurocode 8: design provisions for earthquake resistant structures. EN-1998-1:2004, European Committee for Standardization, Brussels, Belgium, 2004.
[27] P. Dusicka, G. Lewis, Investigation of replaceable sacrificial steel links, Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering, number 1659. EERI, (2010).
[28] E. A. Sumner, T. M. Murray, Behavior of Extended End-Plate Moment Connections Subjected to Cyclic Loading, Journal of Structural Engineering, 128(4) (2002) 501-508.
[29] J. Liu, A. Astaneh-Asl, Cyclic testing of simple connections including effects of slab, Journal of Structural Engineering, 126(1) (2000) 32-39.‏
[30] J. Liu, A. Astaneh-Asl, Moment–rotation parameters for composite shear tab connections, Journal of Structural Engineering, 130(9) (2004) 1371-1380.‏
[31] S. C. Goel, S. H. Chao, Performance-based plastic design: earthquake-resistant steel structures, International Code Council, 2008.