[1] G.W. Housner, Limit design of structures to resist earthquakes, in: Proc. of 1st WCEE, 1956, pp. 5.1-5.13
[2] H. Akiyama, Earthquake resistant design based on the energy concept, in: Proceedings of 9th WCEE, 1988, pp. 905-910.
[3] C.-M. Uang, V.V. Bertero, Use of energy as a design criterion in earthquake-resistant design, Earthquake Engineering Research Center, University of California Berkeley …, 1988.
[4] M. Fakhri-Niasar, The Energy Spectrum of the Iranian Earthquakes, Islamic Azad University, Tehran, 1998.
[5] H. Maleki, M. Ghafory-Ashtiany, Study on the Energy of Earthquakes in Reinforced Concrete Moment Frames, Journal of Seismology and Earthquake Engineering, 3(2) (2000) 11
[6] L.D. Decanini, F. Mollaioli, An energy-based methodology for the assessment of seismic demand, Soil Dynamics and Earthquake Engineering, 21(2) (2001) 113-137.
[7] L. Ye, G. Cheng, Z. Qu, X. Lu, Study on energy-based seismic design method and application on steel braced frame structures, Jianzhu Jiegou Xuebao(Journal of Building Structures), 33(11) (2012) 36-45.
[8] A. Ruzi, Energy concept in earthquake-resistant design, 2003.
[9] P. Khashaee, B. Mohraz, F. Sadek, H. Lew, J.L. Gross, Distribution of earthquake input energy in structures, Diane Publishing Company, 2003.
[10] A.G. GHODRATI, D.G. ABDOLLAHZADE, Z.M. KHAN, Earthquake duration and damping effects on input energy, (2007).
[11] F.H. Shargh, M. Hosseini, An optimal distribution of stiffness over the height of shear buildings to minimize the seismic input energy, Journal of Seismology and Earthquake Engineering, 13(1) (2011) 25-32.
[12] S.J. Kamali-Firozabadi, Using energy method to estimate the required displacement of steel moment frames, Khaje Nasir Toosi University of Technology, 2011.
[13] ن. سیاهپلو, اثر زلزله های نزدیک گسل بر تخمین نیازهای لرزه ای قاب خمشی فولادی با منظور نمودن اثرات چند درجه آزادی, دانشگاه سمنان, 1394.
[14] G.R. Havaei, E. Mobedi, Effect of interaction and rocking motion on the earthquake response of buildings, (2015).
[15] R. Bemanian, H. Shakib, Evaluation of nonlinear behavior of dual steel frame-shear wall system by a group of real earthquakes, (2016).
[16] R. Vahdani, M. Bitarafan, M.I. Khodakarami, Effect of the soil-structure interaction on performance assessment of the energy-based cumulative damage index in concrete reinforced frames, (2016).
[17] م.ع. واثقی نیا پیشنهاد روشی برای بهبود رفتار لرزه ای قاب های خمشی فولادی با رویکرد روش انرژی, دانشگاه سمنان, 1397.
[18] V.V. Bertero, R. Herrera, S. Mahin, Establishment of design earthquakes-evaluation of present methods, in: Proc., Int. Symp. on Earthquake Structural Engineering, Univ. of Missouri-Rolla Rolla, Mo., 1976, pp. 551-580.
[19] N. Makris, C.J. Black, Dimensional analysis of bilinear oscillators under pulse-type excitations, Journal of Engineering Mechanics, 130(9) (2004) 1019-1031.
[20] A.K. Chopra, Dynamics of Structures. Theory and Applications to, Earthquake Engineering, (2017).
[21] A.K. Chopra, Dynamics of structures: theory and applications to earthquake engineering, Prentice-Hall, 2001.
[22] C.M. Uang, V.V. Bertero, Evaluation of seismic energy in structures, Earthquake Engineering & Structural Dynamics, 19(1) (1990) 77-90.
[23] B. Stafford Smith, A. Coull, Tall building structures: analysis and design, (1991)
[24] I.N.B. Code, Applied Loads on Buildings, Part 6, (2013).
[25] آیین نامه طراحی ساختمانها در برابر زلزله استاندارد 2800, in, مرکز تحقیقات راه، مسکن و شهرسازی, تهران, 1393.
[26] A.I.o.S.C. (AISC), Specification for Structural Steel Buildings (ANSI/AISC 360-16), (2010).
[27] A.C.I. Committee, A.C. Institute, I.O.f. Standardization, Building code requirements for structural concrete (ACI 318-08) and commentary, in, American Concrete Institute, 2008.
[28] C.S.I. Berkeley, Computer Program ETABS Ultimate 2015, Computers and Structures Inc., Berkeley, California, (2015).
[29] I.-R. Choi, H.-G. Park, Cyclic loading test for reinforced concrete frame with thin steel infill plate, Journal of Structural Engineering, 137 (2010) 654-664.
[30] A.S.C. Engineers, Minimum Design Loads for Buildings and Other Structures: Second Printing, (2010).
[31] S. Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves, The open system for earthquake engineering simulation (OpenSEES) user command-language manual, (2006).
[32] I.N.B. Code, Design and Implement of Concrete Buildings, Part 9, (2013).
[33] I.N.B. Code, Design and Implement of Steel Buildings, Part 10, (2013).
[34] L.J. Thorburn, G.L. Kulak, C.J. Montgomery, Analysis of steel plate shear walls, in: Structural engineering report no.107, Edmonton, AB, Canada, 1983
[35] P.A. Timler, G.L. Kulak, Experimental study of steel plate shear walls, (1983).
[36] E.V.V. Tromposch, G.L. Kulak, Cyclic and Static Behavior of Thin Panel Steel Plate Shear walls, (1987).
[37] C.S. Association, CAN/CSA-S16. 1-M89. Limit States Design of Steel Structures, (1990).
[38] H.-G. Park, J.-H. Kwack, S.-W. Jeon, W.-K. Kim, I.-R. Choi, Framed steel plate wall behavior under cyclic lateral loading, Journal of structural engineering, 133(3) (2007) 378-388.
[39] T.H. Heaton, J.F. Hall, D.J. Wald, M.W. Halling, Response of high-rise and base-isolated buildings to a hypothetical Mw 7.0 blind thrust earthquake, Science, 267(5195) (1995) 206-211
[40] W. Iwan, Drift spectrum: measure of demand for earthquake ground motions, Journal of structural engineering, 123(4) (1997) 397-404.
[41] H. Sucuoǧlu, A. Erberik, Energy‐based hysteresis and damage models for deteriorating systems, Earthquake engineering & structural dynamics, 33(1) (2004) 69-88.
[42] J.W. Baker, Quantitative classification of near-fault ground motions using wavelet analysis, Bulletin of the Seismological Society of America, 97 (2007) 1486-1501.