[1] CALTRANS, 2013. Caltrans Seismic Design Criteria Version 1.7. California Department of Transportation, Sacramento, CA.
[2] Ghobarah A. A., Tso W. K., 1973. “Seismic Analysis of Skewed Highway Bridges with Intermediate Supports”. Earthquake Engineering & Structural Dynamics, 2(3), pp. 235-248.3.
[3] Bakht B., 1988. “Analysis of Some Skew Bridges as Right Bridges”. Journal of Structural Engineering, 114(10), pp. 2307-2322.
[4] Wakefield R. R., Nazmy A. S., Billington D. P., 1991. “Analysis of Seismic Failure in Skew RC Bridge”. Journal of Structural Engineering, 117(3), pp. 972-986.
[5] Meng J. Y., Lui E. M., 2000. “Seismic Analysis and Assessment of a Skew Highway Bridge”. Engineering Structures, 22(11), pp. 1433-1452.
[6] Maleki S., 2005. “Seismic Modeling of Skewed Bridges with Elastomeric Bearings and Side Retainers”. Journal of Bridge Engineering, 10(4), pp. 442-449.
[7] Menassa C., Mabsout M., Tarhini K., Frederick G., 2007. “Influence of Skew Angle on Reinforced Concrete Slab Bridges”. Bridge Engineering, ASCE, 12(2), pp. 205-214.
[8] Shamsabadi A., Nordal S., 2006. “Modeling Passive Earth Pressures on Bridge Abutments for Nonlinear Seismic Soil-Structure Interaction using Plaxis”. Plaxis Bulletin, 20, pp. 8-15.
[9] Shamsabadi A., Rollins K. M., Kapuskar M., 2007. “Nonlinear Soil–Abutment–Bridge Structure Interaction for Seismic Performance-Based Design”. Geotechnical and Geoenvironmental Engineering, ASCE, 133(6), pp. 707-720.
[10] Huo X. S., Zhang Q., 2008. “Effect of Skewness on the Distribution of Live Load Reaction at Piers of Skewed Continuous Bridges”. Bridge Engineering, ASCE, 13(1), pp. 110-114.
[11] Kalantari A., Amjadian M., 2010. “An Approximate Method for Dynamic Analysis of Skewed Highway Bridges with Continuous Rigid Deck”. Engineering Structures, 32(9), pp. 2850-2860.
[12] Dimitrakopoulos E. G., 2011. “Seismic Response Analysis of Skew Bridges with Pounding Deck-Abutment Joints”. Engineering Structures, 33(3), pp. 813-826.
[13] Apirakvorapinit P., Mohammadi J., Shen J., 2012. “Analytical Investigation of Potential Seismic Damage to a Skewed Bridge”. Practice Periodical on Structural Design and Construction, 17(1), pp. 5-12.
[14] Zakeri B., Padgett J. E., Amiri G. G., 2014. “Fragility Analysis of Skewed Single-Frame Concrete Box-Girder Bridges”. Journal of Performance of Constructed Facilities, 28(3), pp. 571-582.
[15] Deepu S., Prajapat K., Ray-Chaudhuri S., 2014. “Seismic Vulnerability of Skew Bridges under Bi-directional Ground Motions”. Engineering Structures, 71, pp. 150-160.
[16] Kaviani P., Zareian F., Taciroglu E., 2014. Performance-Based Seismic Assessment of Skewed Bridges. PEER Report No. 2014/01. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
[17] Mallick M., Raychowdhury P., 2015. “Seismic Analysis of Highway Skew Bridges with Nonlinear Soil–Pile Interaction”. Transportation Geotechnics, 3, pp. 36-47.
[18] Ghotbi A. R., 2016. “Response Sensitivity Analyses of Skewed Bridges with and without Considering Soil–Structure Interaction”. Structures, 5, pp. 219-232.
[19] Omrani R., Mobasher B., Sheikhakbari Sh., Zareian F., Taciroglu E., 2017. “Variability in the Predicted Seismic Performance of a Typical Seat-type California Bridge due to Epistemic Uncertainties in its Abutment Backfill and Shear-key Models”. Engineering structures, 148, pp. 718-738.
[20] McKenna F., Fenves G.L., Scott M.H., 2000. The Open System for Earthquake Engineering Simulation, University of California, Berkeley, CA. See also URL http://opensees.berkeley.edu.
[21] CSI, 2019. SAP2000- Linear and Nnonlinear Static and Dynamic Analysis and Design of Three-Dimensional Structures: Basic Analysis Reference Manual. Computers and Structures, Inc., Berkeley, CA.
[22] Aviram A., Mackie K. R., Stojadinovic B., 2008. Guidelines for Nonlinear Analysis of Bridge Structures in California. PEER Report No. 2008/03. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
[23] Mander J.B., Priestley M.J.N., Park R., 1988. “Theoretical Stress-Strain Model for Confined Concrete”. Journal of Structural Engineering, ASCE, 114(8), pp. 1804–1825.
[24] Bozorgzadeh A., Megally S., Restrepo J. I., Ashford S. A., 2006. Capacity Evaluation of Exterior Sacrificial Shear Keys of Bridge Abutments”. Journal of Bridge Engineering, ASCE, 11(5), pp. 555-565.
[25] Zhang J., Makris N., 2002. “Kinematic Response Functions and Dynamic Stiffness of Bridge Embankments”. Earthquake Engineering and Structural Dynamics, 31(11), pp.1933-1966.
[26] Matlock H., 1970. Correlation for Design of Laterally Loaded Piles in Soft Clay. In Proceedings of the 2nd Annual Offshore Technology Conference, Houston, Texas, OTC 1204.
[27] API, 2000. API Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms. Report No. RP 2A-WSD. American Petroleum Institute, Washington, D.C.
[28] Mackie K.R., Lu J., Elgamal A., 2012. "Performance-Based Earthquake Assessment of Bridge Systems Including Ground-foundation Interaction". Soil Dynamics and Earthquake Engineering, 42, pp. 184-196.
[29] Code No. 463, 2008. Road and Railway Bridges Seismic Resistant Design Code. Ministry of Roads and Transportation, Tehran, Iran, (in Persian).
[30] Charney F., 2010. “Site Classification Procedure for Seismic Design”. Seismic Loads, ASCE, 7(20), pp. 11-18.
[31] ATC, 1996. Improved Seismic Design Criteria for California Bridges: Provisional Recommendations, ATC Report No. ATC-32. Applied Technology Council, Redwood City, CA.
[32] PEER Ground Motion Database, Pacific Earthquake Engineering Research Center. See also URL http://peer.berkeley.edu.
[33] H. Soltani, F. Emami, 2019. Seismic Behavior of Reinforced Concrete Skew Bridges Embedded on Stiff Clay under Near Fault Ground Motions, with Considering Soil-Structure Interaction. Proceedings of the 3rd International Conference on Applied Researches in Structural Engineering and Construction Management, Tehran, Iran (in Persian).
[34] ASCE, 2010. Minimum Design Loads for Buildings and Other Structures, ASCE 7-10. American Society of Civil Engineers, Reston, VA.