اولویت‌‌بندی روش‌های توسعه کم‌ اثر به منظور مدیریت رواناب سطحی شهری، با استفاده از روش TOPSIS و Fuzzy TOPSIS (مطالعه موردی: شهرک سپاهان‌شهر اصفهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

در دهه‌های اخیر به دلیل گسترش شهرنشینی، درصد مناطق مسکونی و صنعتی و در نتیجه درصد مناطق نفوذناپذیر افزایش یافته است. این امر موجب افزایش رواناب سطحی شهر‌ها شده است. بنابراین لازم است تا با استفاده از راهکار‌هایی همچون روش‌های توسعه کم‌اثر، مقادیر رواناب سطحی در شهرها کنترل شود. در این پژوهش از 6 روش توسعه کم اثر (LID) که شامل: روکش نفوذپذیر، بشکه ذخیره باران، ترانشه نفوذ، سیستم نگهداشت زیستی، روکش‌ نفوذپذیر-ترانشه نفوذ و بشکه ذخیره باران-سیستم نگهداشت زیستی، استفاده شده است. این روش‌ها توسط 4 شاخص کاهش حجم رواناب، کاهش دبی اوج رواناب، اقتصادی و اجتماعی مورد ارزیابی قرار‌ گرفتند. برای تعیین مقادیر شاخص‌های هیدرولوژیک حجم و دبی اوج رواناب از مدل SWMM، برای تعیین مقادیر شاخص اقتصادی (هزینه) از فهرست آنالیز بها و برای شاخص اجتماعی، تعداد 20 پرسشنامه‌ توسط متخصصان محلی، تکمیل شد. در ادامه و به منظور اولویت‌بندی روش‌های LID، از دو معیار تصمیم‌گیری چند شاخصه شامل: TOPSIS و Fuzzy TOPSIS، با در نظر گرفتن حالت‌های‌ وزن‌دهی آنتروپی شانون، یکسان، تأکید بر معیار اقتصادی و تأکید بر معیار هیدرولوژیک برای روش TOPSIS و حالت وزن‌دهی آنتروپی شانون فازی برای روشFuzzy TOPSIS ، استفاده شد. نتایج نشان داد که در روش TOPSIS و در حالت‌های وزن‌دهی یکسان، تأکید بر معیار اقتصادی و تأکید بر معیار هیدرولوژیک، سناریوی ترکیبی بشکه باران-سیستم نگهداشت زیستی و در حالت وزن‌دهی آنتروپی شانون، سناریوی بشکه باران به عنوان سناریوی برتر انتخاب شدند. همچنین در روش Fuzzy TOPSIS، سناریوی سیستم نگهداشت زیستی، رتبه اول را کسب نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prioritization of Low-Impact Development Methods for Management of Urban Surface Runoff, Using the Fuzzy TOPSIS and TOPSIS Method (Case Study: Sepahan-Shahr Town, Isfahan)

نویسندگان [English]

  • Niloofar aghili mahabadi
  • Hamed Reza Zarif Sanayei
  • Seyed Morteza Hatefi
Civil Engineering, Faculty of Engineering, Shahrekord University, Iran
چکیده [English]

In recent decades, the percentage of residential areas has increased due to the expansion of urbanization. This has led to an increase in the percentage of impermeable areas, thus increasing surface runoff in cities. Therefore, it is necessary to control surface runoff values using strategies such as low-impact development (LID) methods in cities. In this study, 6 LID methods have been used, namely permeable pavement, rain barrel, infiltration trench, bio-retention system, impermeable pavement-infiltration trench, and rain barrel-bio-retention system. These methods have been evaluated by 4 criteria which are: reduction of runoff volume, reduction of peak discharge of runoff, economic and social criteria. The SWMM model has been used to determine the values of hydrological criteria. To determine the values of the economic criteria (cost), the price analysis list, and the social criteria, a questionnaire has been used by experts in the field. To prioritize LID methods, the Fuzzy TOPSIS and TOPSIS multi-character decision-making criteria have been used, in terms of the weighted entropy of the fuzzy Shannon for the Fuzzy TOPSIS method and terms of the weighted entropy, equal, emphasis on hydrological criteria and emphasis on economic criteria, for TOPSIS method. The results showed that in the TOPSIS method in terms of the weighted equal, emphasis on economic criterion and emphasis on hydrological criterion, bio-retention system & rain barrel and, in terms of the weighted entropy, rain barrel, selected as the best scenario. In the Fuzzy TOPSIS method, the rain barrel scenario was selected as the most efficient scenario and ranked first in the study area.

کلیدواژه‌ها [English]

  • Runoff
  • SWMM model
  • LID methods
  • TOPSIS
  • Fuzzy TOPSIS
1.S. Eslamian, S.S. Okhravi, Principles of Designing Rainwater Harvesting Systems (Residential Application), Kankash 2015.
2.A. Rossman, Storm water management model user's manual, version 5.0, National Risk Management Research Laboratory, Office of Research and Development 2010.
3.Jia, Y. Lu, L.Y. Shaw, Y. Chen, Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village, Separation and Purification Technology, 84 (2012) 112-119.
4.Soleymani, K. Behzadian, A. Ardeshir, Evaluation of strategies for modifying urban storm water drainage system using risk-based criteria, (2015) 16-29.
5.A. Campisano, F.V. Catania, C. Modica, Evaluating the SWMM LID Editor rain barrel option for the estimation of retention potential of rainwater harvesting systems, Urban Water Journal, 14 (2017) 876-881.
6.Poursahebi, M.Z. Niri, S.M. Ghoudarzi, Simulating of LID-BMP Methods on Urban Runoff (Case Study: District 22, Tehran), Journal of Water and Wastewater, 30 (2019) 114-121. (In Persian)
7.Wang, M. Sun, B. Song, Public perceptions of and willingness to pay for sponge city initiatives in China, Resources, Conservation and Recycling, 122 (2017) 11-20.
8.Liu, L. Chen, Z. Shen, Y. Xiao, G. Wei, A fast and robust simulation-optimization methodology for stormwater quality management, Journal of Hydrology, 576 (2019) 520-527.
9.Randall, F. Sun, Y. Zhang, M.B. Jensen, Evaluating Sponge City volume capture ratio at the catchment scale using SWMM, Journal of environmental management, 246 (2019) 745-757.
10.De Montis, P. De Toro, B. Droste-Franke, I. Omann, S. Stagl, Criteria for quality assessment of MCDA methods, 3rd Biennial Conference of the European Society for Ecological Economics, Vienna, Citeseer, 2000, pp. 3-6
11.S. Jebel Ameli, A. Rezaeifar, A. Chaeibaaksh Langroudi, Risk ranking of project using multicriteria decision-making processs, journal of Faculity of Engineering, 41 (2005) 863-871. (In Persian)
12.Lagzian, Identifying and prioritizing surface runoff management scenarios using multi-ctiteria decision making techniques for Neishabour city, University of Agricultural Sciences and Natura Resources, 2014. (In Persian)
13.R. Safavi, S. Dadjou, N. G., Extraction of Intensity-Duration-Frequency (IDF) Curves Under Climate Change, Case study: Isfahan Synoptic Station, Iran-Water Resources Research, 15 (2019) 217-227. (In Persian)
14.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Learning systems and intelligent robots, Springer1974, pp. 1-10.
15.H. Lotfi, R. Fallahnejad, Imprecise Shannon’s entropy and multi attribute decision making, Entropy, 12 (2010) 53-62.
16.J. Chaghooshi, M.R. Fathi, M. Kashef, Integration of fuzzy Shannon's entropy with fuzzy TOPSIS for industrial robotic system section, Journal of Industrial Engineering and Management (JIEM), 5 (2012) 102-114.
17.Hatefi, N. Koohi Habibi, E. Abdollahi, Evaluating investment potential tourism centers using integrated model of fuzzy Shannon’s entropy and fuzzy ARAS method, Tourism Management Studies, 14 (2019). (In Persian)
18.-L. Hwang, A.S.M. Masud, Multiple objective decision making—methods and applications: a state-of-the-art survey, Springer Science & Business Media 2012.
19.-S. Shih, H.-J. Shyur, E.S. Lee, An extension of TOPSIS for group decision making, Mathematical and computer modelling, 45 (2007) 801-813.
20.K. Patil, R. Kant, A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers, Expert systems with applications, 41 (2014) 679-693.