[1] B.N. Sharp, REINFORCED AND PRESTRESSED CONCRETE IN MARITIME STRUCTURES, Proceedings of the Institution of Civil Engineers-Structures and Buildings, 116(3) (1996) 449-469 %@ 1751-7702.
[2] F.S. Rostásy, FRP Tensile Elements For Prestressed Concrete--State of the art, Potentials and limits, Special Publication, 138 (1993) 347-366.
[3] F. Micelli, J.J. Myers, S. Murthy, Performance of FRP confined concrete subjected to accelerated environmental conditioning, in, 2002, pp. 87-98.
[4] X. Li, Q. Xu, S. Chen, An experimental and numerical study on water permeability of concrete, Construction and building materials, 105 (2016) 503-510 %@ 0950-0618.
[5] A.C.I. Ct, 13.(2013).“, ACI Concrete Terminology, ACI STANDARD, First Printing January, (2013).
[6] M. Dashtibadfarid, M. Afrasiabi, Low-Permeability Concrete: Water-to-Cement Ratio Optimization for Designing Drinking Water Reservoirs, Int. J. Innov. Eng. Sci, 2 (2017) 20-24.
[7] S. Ahmad, A.K. Azad, K.F. Loughlin, Effect of the key mixture parameters on tortuosity and permeability of concrete, Journal of Advanced Concrete Technology, 10(3) (2012) 86-94 %@ 1347-3913.
[8] T.C. Fu, W. Yeih, J.J. Chang, R. Huang, The influence of aggregate size and binder material on the properties of pervious concrete, Advances in Materials Science and Engineering, 2014 %@ 1687-8434 (2014).
[9] Z. Yu, C. Ni, M. Tang, X. Shen, Relationship between water permeability and pore structure of Portland cement paste blended with fly ash, Construction and building materials, 175 (2018) 458-466 %@ 0950-0618.
[10] K. Samimi, S. Kamali-Bernard, A.A. Maghsoudi, M. Maghsoudi, H. Siad, Influence of pumice and zeolite on compressive strength, transport properties and resistance to chloride penetration of high strength self-compacting concretes, Construction and Building Materials, 151 (2017) 292-311 %@ 0950-0618.
[11] A. Belarbi, S.-W. Bae, An experimental study on the effect of environmental exposures and corrosion on RC columns with FRP composite jackets, Composites Part B: Engineering, 38(5-6) (2007) 674-684 %@ 1359-8368.
[12] A. Gharachorlou, A. Akbar Ramezanianpour, Resistance of concrete specimens strengthened with FRP sheets to the penetration of chloride ions, Arabian Journal for Science and Engineering, 35(1) (2010) 141 %@ 1319-8025.
[13] P. Böer, L. Holliday, T.H.K. Kang, Independent environmental effects on durability of fiber-reinforced polymer wraps in civil applications: a review, Construction and Building Materials, 48 (2013) 360-370 %@ 0950-0618.
[14] R. Gopalan, B.R. Somashekar, B. Dattaguru, Environmental effects on fibre—Polymer composites, Polymer degradation and stability, 24(4) (1989) 361-371 %@ 0141-3910.
[15] L.C. Bank, T.R. Gentry, A. Barkatt, Accelerated test methods to determine the long-term behavior of FRP composite structures: environmental effects, Journal of Reinforced Plastics and Composites, 14(6) (1995) 559-587 %@ 0731-6844.
[16] M.A.G. Silva, B.S. da Fonseca, H. Biscaia, On estimates of durability of FRP based on accelerated tests, Composite Structures, 116 (2014) 377-387 %@ 0263-8223.
[17] R. Cusson, Y. Xi, The behavior of fiber-reinforced polymer reinforcement in low temperature environmental climates, in, University of Colorado, 2002.
[18] N. Banthia, A. Biparva, S. Mindess, Permeability of concrete under stress, Cement and Concrete Research, 35(9) (2005) 1651-1655 %@ 0008-8846.
[19] M. Naderi, Registration of Patent in Companies and industrial property Office,“Determination of concrete, stone, mortar, brick and other construction materials permeability with cylindrical chamber method.”, in, Reg, 2010.
[20] M. Naderi, A. Kaboudan, Cylindrical Chamber: A New In Situ Method for Measuring Permeability of Concrete with and without Admixtures, Journal of Testing and Evaluation, 48(3 %@ 0090-3973) (2020).
[21] B.S. En, 480-11. Admixtures for concrete, mortar and grout-test methods-part 11: determination of air void characteristics in hardened concrete, London: British Standards Institution, (2005).
[22] F.H. Wittmann, A.D.A. Wittmann, P.G. Wang, Capillary absorption of integral water repellent and surface impregnated concrete, Restoration of Buildings and Monuments, 20(4) (2014) 281-290 %@ 1864-7022.
[23] C. Hall, T.K.-M. Tse, Water movement in porous building materials—VII. The sorptivity of mortars, Building and Environment, 21(2) (1986) 113-118 %@ 0360-1323.
[24] A. Astm, Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens), Annual Book of ASTM StandardsAnnual Book of ASTM Standards, 4(1) (2013) 1-9.
[25] C. Astm, 33, 2008 “Standard Specification for Concrete Aggregates”, West Conshohocken, USA, (2008).
[26] P. Pliya, A.L. Beaucour, A. Noumowé, Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature, Construction and Building Materials, 25(4) (2011) 1926-1934 %@ 0950-0618.
[27] P. Zhang, D. Li, Y. Qiao, S. Zhang, C. Sun, T. Zhao, Effect of air entrainment on the mechanical properties, chloride migration, and microstructure of ordinary concrete and fly ash concrete, Journal of Materials in Civil Engineering, 30(10) (2018) 04018265 %@ 04010899-04011561.
[28] M. Pigeon, R. Pleau, M. Azzabi, N. Banthia, Durability of microfiber-reinforced mortars, Cement and Concrete Research, 26(4) (1996) 601-609 %@ 0008-8846.
[29] D. Niu, L. Jiang, M. Bai, Y. Miao, Study of the performance of steel fiber reinforced concrete to water and salt freezing condition, Materials & Design, 44 (2013) 267-273 %@ 0261-3069.