روش طراحی بر اساس جابجایی مستقیم برای قاب‌های خمشی فولادی مجهز به میراگر لزج سیال غیرخطی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 اردبیل-خیابان دانشگاه-دانشگاه محقق اردبیلی -دانشکده فنی-گروه عمران

چکیده

روش طراحی بر اساس جابجایی مستقیم از جمله روش‌های طراحی بر اساس عملکرد می‌باشد که به دلیل عملکرد موثر این روش در دست‌یابی به سطح عملکرد طراحی مورد توجه طراحان و پژوهشگران قرار گرفته است. در پژوهش‌های پیشین روش طراحی بر اساس عملکرد با اعمال ضرایبی به منظور طراحی سازه‌های مجهز به میراگر لزج سیال خطی اصلاح شده است. این ضرایب به دلیل تاثیر مودهای بالاتر و اختلاف بین شبه سرعت طیفی و سرعت طیفی در فرآیند طراحی اعمال می‌شود. در این پژوهش، این رویکرد طراحی برای میراگرهای لزج سیال غیرخطی توسعه داده می‌شود و قاب‌های خمشی فولادی با تعداد طبقات 4، 8 و 12 طبقه با هدف دست‌یابی به سطح عملکرد ایمنی جانی تحت خطر زلزله با احتمال وقوع 10 درصد در 50 سال با استفاده از این روش طراحی می‌شوند. درصدی از برش طبقات که باید توسط میراگر لزج سیال تحمل شود برابر با 30 درصد برش طبقات در نظر گرفته شده است. برای ارزیابی عملکرد روش طراحی، قاب‌های خمشی طراحی شده با استفاده از نرم‌افزار اپنسیس مدل‌سازی شده و تحت 20 شتاب‌نگاشت زلزله تحلیل دینامیکی غیرخطی شده‌‌اند. نتایج نشان می‌دهد که متوسط حداکثر جابجایی نسبی طبقات با اعمال ضرایب اصلاحی به جابجایی نسبی هدف نزدیک‌تر شده و سازه‌های طراحی شده به سطح عملکرد مورد نظر دست یافته‌اند. بنابراین روش طراحی بر اساس جابجایی مستقیم اصلاح شده را می‌توان به عنوان روشی کارآمد برای طراحی قاب‌های خمشی فولادی مجهز به میراگر لزج سیال غیرخطی در نظر گرفت. برای ارزیابی تاثیر رفتار غیرخطی میراگر در نتایج طراحی، قاب‌های خمشی همچنین در حالت کنترل شده توسط میراگر لزج سیال خطی نیز طراحی شده‌اند. نتایج نشان می‌دهد که مقاطع سازه‌ای طراحی شده در حالت‌های کنترل شده توسط میراگر لزج سیال خطی و غیرخطی تفاوت زیادی با یکدیگر ندارند در حالی که رفتار غیرخطی میراگر لزج سیال تاثیر قابل توجهی در طراحی ضریب میرایی میراگر دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Direct displacement based design approach for steel moment frames equipped with nonlinear fluid viscous damper

نویسندگان [English]

  • Mahsa Noruzvand 1
  • Kazem Shakeri 1
1 Department of Civil Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

The direct displacement-based design (DDBD) approach is one of the performance-based design methods that has been paid attention by designers and researchers because of its effective performance in the achievement of design performance level. In previous researches, the DDBD approach has been modified for the design of structures equipped with linear fluid viscous damper (FVD) by applying two different modification factors. These factors are applied because of higher mode effects and the difference between pseudo‐spectral velocity and spectral velocity. In this study, this approach is extended for nonlinear FVD and steel moment frames with different heights of 4, 8 and 12 stories are designed using this modified method to achieve life safety performance level under seismic hazard having a probability of occurrence 10% in 50 years. The design force of FVD is also considered as 30% of the design story shear at each story. To evaluate the design method performance, steel moment frames have been simulated in OpenSees and nonlinear time-history analysis has been performed under twenty earthquake records. The results show that average peak story drift becomes close to target drift with applying modification factors in the design process and the designed structures have achieved the desirable performance level. Therefore it can be concluded that the modified DDBD is an effective method for the design of steel moment frames equipped with nonlinear FVD. To evaluate the effect of FVD nonlinearity in design results, steel moment frames have also been designed using DDBD while have been controlled by linear FVD and a comparison has been conducted between design results. The results show that the design sections of structures equipped with linear and nonlinear FVDs are almost the same, whereas the nonlinear behavior of FVD has a significant effect on the design of the damping coefficient.
 

کلیدواژه‌ها [English]

  • Performance-based design
  • Direct displacement-based design
  • Steel moment frame
  • Nonlinear fluid viscous damper
  • Target drift
[1] ASCE 7-10, Minimum design loads for buildings and other structures, American Society of Civil Engineers, Reston, VA, 2010.
[2] FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings, American Society of Civil Engineers, Washington, DC, 2000.
[3] S. Leelataviwat, S.C. Goel, B. Stojadinović, Toward performance-based seismic design of structures, Earthquake Spectra, 15(3) (1999) 435-461.
[4] S.S. Lee, S.C. Goel, S.-H. Chao, Performance-based seismic design of steel moment frames using target drift and yield mechanism, in:  Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
[5] M.N. Priestley, Myths and fallacies in earthquake engineering, Bulletin of the New Zealand Society for Earthquake Engineering, 26(3) (1993) 329-341.
[6] M. Priestley, Myths and Fallacies in Earthquake Engineering, Revisited: The Ninth Mallet Milne Lecture, 2003, Istituto Universitario di Studi Superiori di Pavia, 2003.
[7] A. Shibata, M.A. Sozen, Substitute-structure method for seismic design in R/C, Journal of the Structural Division, 102 (1976) 1-18.
[8] A.K. Chopra, R.K. Goel, Direct displacement-based design: use of inelastic vs. elastic design spectra, Earthquake Spectra, 17(1) (2001) 47-64.
[9] M. Priestley, M. Kowalsky, Direct displacement-based seismic design of concrete buildings, Bulletin of the New Zealand Society for Earthquake Engineering, 33(4) (2000) 421-444.
[10] D.R. Sahoo, A. Prakash, Seismic behavior of concentrically braced frames designed using direct displacement-based method, International Journal of Steel Structures, 19(1) (2019) 96-109.
[11] G.J. O’Reilly, T.J. Sullivan, Direct displacement-based seismic design of eccentrically braced steel frames, Journal of Earthquake Engineering, 20(2) (2016) 243-278.
[12] S. Malekpour, H. Ghaffarzadeh, F. Dashti, Direct displacement‐based design of steel‐braced reinforced concrete frames, The Structural Design of Tall and Special Buildings, 22(18) (2013) 1422-1438.
[13] T. Sullivan, T. Maley, G. Calvi, Seismic response of steel moment resisting frames designed using a Direct DBD procedure, in:  Proceedings of the 8th International Conference on Structural Dynamics, Leuven, Belgium, 2011.
[14] R. Roldán, T. Sullivan, G. Della Corte, Displacement-based design of steel moment resisting frames with partially-restrained beam-to-column joints, Bulletin of Earthquake Engineering, 14(4) (2016) 1017-1046.
[15] C.I. Nievas, T.J. Sullivan, Applicability of the direct displacement-based design method to steel moment resisting frames with setbacks, Bulletin of Earthquake Engineering, 13(12) (2015) 3841-3870.
[16] D. Cardone, M. Dolce, G. Palermo, Direct displacement-based design of seismically isolated bridges, Bulletin of Earthquake Engineering, 7(2) (2009) 391.
[17] Y.Y. Lin, M. Tsai, J. Hwang, K. Chang, Direct displacement-based design for building with passive energy dissipation systems, Engineering Structures, 25(1) (2003) 25-37.
[18] J. Kim, H. Choi, Displacement-based design of supplemental dampers for seismic retrofit of a framed structure, Journal of Structural Engineering, 132(6) (2006) 873-883.
[19] T. Sullivan, A. Lago, Towards a simplified direct DBD procedure for the seismic design of moment resisting frames with viscous dampers, Engineering Structures, 35 (2012) 140-148.
[20] S. Moradpour, M. Dehestani, Optimal DDBD procedure for designing steel structures with nonlinear fluid viscous dampers, Structures, 22 (2019) 154-174.
[21] M. Noruzvand, M. Mohebbi, K. Shakeri, Modified direct displacement‐based design approach for structures equipped with fluid viscous damper, Structural Control and Health Monitoring, 27(1) (2020) e2465.
[22] M.N. Priestley, G.M. Calvi, M.J. Kowalsky, Displacement-based seismic design of structures, IUSS press, Pavia, 2007.
[23] T.J. Sullivan, Direct displacement-based design of a RC wall-steel EBF dual system with added dampers, Bulletin of the New Zealand Society for Earthquake Engineering, 44(3) (2011) 167-178.
[24] K. Rama Raju, M. Ansu, N.R. Iyer, A methodology of design for seismic performance enhancement of buildings using viscous fluid dampers, Structural Control and Health Monitoring, 21(3) (2014) 342-355.
[25] F. Zareian, D. Lignos, H. Krawinkler, Evaluation of seismic collapse performance of steel special moment resisting frames using FEMA P695 (ATC-63) methodology, in:  Structures Congress 2010, 2010, pp. 1275-1286.
[26] A. Elkady, D.G. Lignos, Effect of gravity framing on the overstrength and collapse capacity of steel frame buildings with perimeter special moment frames, Earthquake Engineering & Structural Dynamics, 44(8) (2015) 1289-1307.
[27] P.G. Somerville, Development of ground motion time histories for phase 2 of the FEMA/SAC steel project, SAC Joint Venture, 1997.
[28] ر. ثابت عهد، س. جواهرزاده، م. لطف اللهی‌یقین، ارزیابی عملکرد میراگر‌های ویسکوز در کاهش ارتعاش لرزه‌ای سازه‌ها با استفاده از تحلیل دینامیکی غیرخطی، کنفرانس بین‌المللی سبک‌سازی و زلزله، کرمان، 1389.
[29] T. Paulay, M.N. Priestley, Seismic design of reinforced concrete and masonry buildings, Wiley, New York, 1992.