[1] ASCE 7-10, Minimum design loads for buildings and other structures, American Society of Civil Engineers, Reston, VA, 2010.
[2] FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings, American Society of Civil Engineers, Washington, DC, 2000.
[3] S. Leelataviwat, S.C. Goel, B. Stojadinović, Toward performance-based seismic design of structures, Earthquake Spectra, 15(3) (1999) 435-461.
[4] S.S. Lee, S.C. Goel, S.-H. Chao, Performance-based seismic design of steel moment frames using target drift and yield mechanism, in: Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
[5] M.N. Priestley, Myths and fallacies in earthquake engineering, Bulletin of the New Zealand Society for Earthquake Engineering, 26(3) (1993) 329-341.
[6] M. Priestley, Myths and Fallacies in Earthquake Engineering, Revisited: The Ninth Mallet Milne Lecture, 2003, Istituto Universitario di Studi Superiori di Pavia, 2003.
[7] A. Shibata, M.A. Sozen, Substitute-structure method for seismic design in R/C, Journal of the Structural Division, 102 (1976) 1-18.
[8] A.K. Chopra, R.K. Goel, Direct displacement-based design: use of inelastic vs. elastic design spectra, Earthquake Spectra, 17(1) (2001) 47-64.
[9] M. Priestley, M. Kowalsky, Direct displacement-based seismic design of concrete buildings, Bulletin of the New Zealand Society for Earthquake Engineering, 33(4) (2000) 421-444.
[10] D.R. Sahoo, A. Prakash, Seismic behavior of concentrically braced frames designed using direct displacement-based method, International Journal of Steel Structures, 19(1) (2019) 96-109.
[11] G.J. O’Reilly, T.J. Sullivan, Direct displacement-based seismic design of eccentrically braced steel frames, Journal of Earthquake Engineering, 20(2) (2016) 243-278.
[12] S. Malekpour, H. Ghaffarzadeh, F. Dashti, Direct displacement‐based design of steel‐braced reinforced concrete frames, The Structural Design of Tall and Special Buildings, 22(18) (2013) 1422-1438.
[13] T. Sullivan, T. Maley, G. Calvi, Seismic response of steel moment resisting frames designed using a Direct DBD procedure, in: Proceedings of the 8th International Conference on Structural Dynamics, Leuven, Belgium, 2011.
[14] R. Roldán, T. Sullivan, G. Della Corte, Displacement-based design of steel moment resisting frames with partially-restrained beam-to-column joints, Bulletin of Earthquake Engineering, 14(4) (2016) 1017-1046.
[15] C.I. Nievas, T.J. Sullivan, Applicability of the direct displacement-based design method to steel moment resisting frames with setbacks, Bulletin of Earthquake Engineering, 13(12) (2015) 3841-3870.
[16] D. Cardone, M. Dolce, G. Palermo, Direct displacement-based design of seismically isolated bridges, Bulletin of Earthquake Engineering, 7(2) (2009) 391.
[17] Y.Y. Lin, M. Tsai, J. Hwang, K. Chang, Direct displacement-based design for building with passive energy dissipation systems, Engineering Structures, 25(1) (2003) 25-37.
[18] J. Kim, H. Choi, Displacement-based design of supplemental dampers for seismic retrofit of a framed structure, Journal of Structural Engineering, 132(6) (2006) 873-883.
[19] T. Sullivan, A. Lago, Towards a simplified direct DBD procedure for the seismic design of moment resisting frames with viscous dampers, Engineering Structures, 35 (2012) 140-148.
[20] S. Moradpour, M. Dehestani, Optimal DDBD procedure for designing steel structures with nonlinear fluid viscous dampers, Structures, 22 (2019) 154-174.
[21] M. Noruzvand, M. Mohebbi, K. Shakeri, Modified direct displacement‐based design approach for structures equipped with fluid viscous damper, Structural Control and Health Monitoring, 27(1) (2020) e2465.
[22] M.N. Priestley, G.M. Calvi, M.J. Kowalsky, Displacement-based seismic design of structures, IUSS press, Pavia, 2007.
[23] T.J. Sullivan, Direct displacement-based design of a RC wall-steel EBF dual system with added dampers, Bulletin of the New Zealand Society for Earthquake Engineering, 44(3) (2011) 167-178.
[24] K. Rama Raju, M. Ansu, N.R. Iyer, A methodology of design for seismic performance enhancement of buildings using viscous fluid dampers, Structural Control and Health Monitoring, 21(3) (2014) 342-355.
[25] F. Zareian, D. Lignos, H. Krawinkler, Evaluation of seismic collapse performance of steel special moment resisting frames using FEMA P695 (ATC-63) methodology, in: Structures Congress 2010, 2010, pp. 1275-1286.
[26] A. Elkady, D.G. Lignos, Effect of gravity framing on the overstrength and collapse capacity of steel frame buildings with perimeter special moment frames, Earthquake Engineering & Structural Dynamics, 44(8) (2015) 1289-1307.
[27] P.G. Somerville, Development of ground motion time histories for phase 2 of the FEMA/SAC steel project, SAC Joint Venture, 1997.
[28] ر. ثابت عهد، س. جواهرزاده، م. لطف اللهییقین، ارزیابی عملکرد میراگرهای ویسکوز در کاهش ارتعاش لرزهای سازهها با استفاده از تحلیل دینامیکی غیرخطی، کنفرانس بینالمللی سبکسازی و زلزله، کرمان، 1389.
[29] T. Paulay, M.N. Priestley, Seismic design of reinforced concrete and masonry buildings, Wiley, New York, 1992.