[1] B. Ebrahimian, A. Nazari, A.Y. Pasha, Evaluating ε50 for lateral load–displacement behavior of piles in clay, Ocean Engineering, 96 (2015) 149-160.
[2] B. Ebrahimian, V. Movahed, Application of an evolutionary-based approach in evaluating pile bearing capacity using CPT results, Ships and Offshore Structures, 12(7) (2017) 937-953.
[3] A. Eslami, E. Aflaki, B. Hosseini, Evaluating CPT and CPTu based pile bearing capacity estimation methods using Urmiyeh Lake Causeway piling records, Scientia Iranica, 18(5) (2011) 1009-1019.
[4] H. Titi, M. Abu-Farsakh, M. Tumay, Evaluation of pile load tests in soft cohesive Louisiana soils, Analysis, Design, Construction, and Testing of Deep Foundations, (1999) 296-308.
[5] T. Lunne, J.J. Powell, P.K. Robertson, Cone penetration testing in geotechnical practice, CRC Press, 2002.
[6] I. Haustorfer, S. Plesiotis, Instrumented dynamic and static pile load testing at two bridge sites, Fifth Australia-New Zealand conference on geomechanics: prediction versus performance; preprints of Papers, (1988) 514.
[7] F. Rausche, G.G. Goble, G.E. Likins, Dynamic Determination of Pile Capacity, Journal of Geotechnical Engineering, 111(3) (1985) 367-383.
[8] K. Fakharian, T. Bahrami, F. Esmaili, I. Hosseinzadeh Attar, Dynamic and Static Tests for Optimization of Spun Piles of a Utility Plant near Persian Gulf-Case Study, The 9th International Conference on Testing and Design Methods for Deep Foundations, (2012) 18-20.
[9] F.S. Niazi, Static axial pile foundation response using seismic piezocone data, Georgia Institute of Technology, 2014.
[10] F.S. Niazi, P.W. Mayne, Cone Penetration Test Based Direct Methods for Evaluating Static Axial Capacity of Single Piles, Geotechnical and Geological Engineering, 31(4) (2013) 979-1009.
[11] M. Abu-Farsakh, H. Titi, Assessment of Direct Cone Penetration Test Methods for Predicting the Ultimate Capacity of Friction Driven Piles, Journal of Geotechnical and Geoenvironmental Engineering - J GEOTECH GEOENVIRON ENG, 130 (2004).
[12] K. Tand, E. Funegard, Pile capacity in stiff clays: CPT method, Congrès international de mécanique des sols et des travaux de fondations. 12, (1989) 349-352.
[13] Z. Wang, N. Zhang, G. Cai, Q. Li, J. Wang, Assessment of CPTU and static load test methods for predicting ultimate bearing capacity of pile, Marine Georesources & Geotechnology, 35(5) (2017) 738-745.
[14] B. Ebrahimian, A.H. Shamshirgaran, Axial Compression Bearing Capacity of Driven Offshore Piles in the Persian Gulf – A Case Study, 13th International Conference on Coasts, Ports and marine structures, (2018) 249-250.
[15] J.-L. Briaud, L.M. Tucker, Measured and predicted axial response of 98 piles, Journal of Geotechnical Engineering, 114(9) (1988) 984-1001.
[16] H.H. Titi, M.Y. Abu-Farsakh, Evaluation of bearing capacity of piles from cone penetration test data, (1999) 296-308.
[17] M.S.S. Almeida, F.A.B. Danziger, T. Lunne, Use of the piezocone test to predict the axial capacity of driven and jacked piles in clay, Canadian Geotechnical Journal, 33(1) (1996) 23-41.
[18] R. Salgado, J. Lee, Pile design based on cone penetration test results, (1999).
[19] R.M. Semple, W.J. Rigden, Shaft capacity of driven pipe piles in clay, Analysis and design of pile foundations, (1984) 59-79.
[20] A.H. Augustesen, The effects of time on soil behaviour and pile capacity, Aalborg University, Department of Civil Engineering, 2006.
[21] G. Cai, S. Liu, A.J. Puppala, Reliability assessment of CPTU-based pile capacity predictions in soft clay deposits, Engineering Geology, 141-142 (2012) 84-91.
[22] A. Eslami, B.H. Fellenius, Pile capacity by direct CPT and CPTu methods applied to 102 case histories, Canadian Geotechnical Journal, 34(6) (1997) 886-904.
[23] S. Lacasse, F. Nadim, S. Knudsen, U.K. Eidsvig, Z. Liu, G. Yetginer, T.R. Guttormsen, Reliability of axial pile capacity calculation methods, in: GéoMontréal 67th Canadian Geotechnical Conference. Paper, 2013.
[24] R. Jardine, F. Chow, R. Overy, J. Standing, ICP design methods for driven piles in sands and clays, Thomas Telford Publishing, 2005.
[25] R. Aggarwal, R. Litton, C. Cornell, W. Tang, J. Chen, J. Murff, Development of pile foundation bias factors using observed behavior of platforms during hurricane Andrew, in: Offshore Technology Conference, Offshore Technology Conference, 1996.
[26] B. Ebrahimian, V. Movahed, A. Nazari, Soil characterisation of South Pars field, Persian Gulf, Environmental Geotechnics, 1(2) (2014) 96-107.
[27] B. Ebrahimian, V. Movahed, A.Y. Pasha, Evaluation of undrained shear strength of marine clay using cone penetration resistance at South Pars field in Iran, Ocean engineering, 54 (2012) 182-195.
[28] A. Eslami, B.H. Fellenius, CPT and CPTu data for soil profile interpretation: review of methods and a proposed new approach, Iranian Journal of Science and Technology Transactions of Civil Engineering, 28(1) (2004) 69-86.
[29] P.K. Robertson, Soil classification using the cone penetration test, Canadian geotechnical journal, 27(1) (1990) 151-158.
[30] A.H. Augustesen, L. Andersen, C.S. Sørensen, Assessment of time functions for piles driven in clay, Aalborg University, Department of Civil Engineering, 2006.
[31] K. Karlsrud, Prediction of load-displacement behaviour and capacity ofaxially loaded piles in clay based on analyses and interpretation of pile load test results, (2012).
[32] M. Khanmohammadi, K. Fakharian, Numerical modelling of pile installation and set-up effects on pile shaft capacity, International Journal of Geotechnical Engineering, 13(5) (2019) 484-498.
[33] ASTM, Standard Test Method for One-Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strained Loading, in: Standard D-4186, United States, 2012.
[34] Cathie-Associates, OPILE Instruction Manual, 2015.
[35] N. Aoki, D.A. Velloso, An approximate method to estimate the bearing capacity of piles, Proc., 5th Pan-American Conf. of Soil Mechanics and Foundation Engineering, 1 (1975) 367-376.
[36] M. Bustamante, L. Gianeselli, Pile bearing capacity prediction by means of static penetrometer CPT, Proceedings of the 2-nd European symposium on penetration testing, (1982) 493-500.
[37] M. Clisby, R. Scholtes, M. Corey, H. Cole, P. Teng, J. Webb, An evaluation of pile bearing capacities, Volume I, Final Report, Mississippi State Highway Department, (1978).
[38] J. de Ruiter, F.L. Beringen, Pile foundations for large North Sea structures, Marine Geotechnology, 3(3) (1979) 267-314.
[39] API, Recommended practice for planning, designing, and constructing fixed offshore platforms, in: API-RP2A, American Petroleum Institute, Washington, USA, 1993.
[40] K. Karlsrud, C.J.F. Clausen, P.M. Aas, Bearing capacity of driven piles in clay, the NGI approach, (2005) 775-782.
[41] H.J. Kolk, E. der Velde, A Reliable Method to Determine Friction Capacity of Piles Driven into Clays, Offshore Technology Conference, (1996) 10.
[42] F.S. Niazi, P.W. Mayne, CPTu-based enhanced UniCone method for pile capacity, Engineering Geology, (2016) 21-34.
[43] G. Philipponnat, Méthode pratique de calcul d'un pieu isolé, à l'aide du pénétromètre statique, Revue Francaise de Geotechnique, (10) (1980) 55-64.
[44] G. Price, I. Wardle, A comparison between cone penetration test results and the performance of small diameter instrumented piles in stiff clay, Proceedings, the 2nd European Symposium on Penetration Testing, 2 (1982) 775-780.
[45] J.H. Schmertmann, Guidelines for cone penetration test: performance and design, No. FHWA-TS-78-209, United States. Federal Highway Administration, Washington, USA, 1978.
[46] M. Tumay, M. Fakhroo, Friction pile capacity prediction in cohesive soils using electric quasi-static penetration tests, Interim Research Rep, 1 (1982) 44.
[47] A.H. Shamshirgaran, B. Ebrahimian, Time Effects on the Axial Compression Bearing Capacity of Piles Driven in Offshore Clays of Persian Gulf – A Case Study, The 3rd Iranian Conference on Geotechnical Engineering, (2018).