استفاده از الگوریتم ژنتیک در برآورد ضریب رفتار سازه‌ فولادی با مهاربندی واگرا تحت زلزله‌های حوزه نزدیک گسل پالس‌گونه با رویکرد سطح عملکرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران

2 استادیار گروه عمران و مدیر تحصیلات تکیملی/ موسسه آموزش عالی جهاددانشگاهی خوزستان

3 استادیار گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران

چکیده

مهم­‌ترین ویژگی ضریب رفتار این است که به طراح این امکان را می‌دهد تا با انجام یک تحلیل الاستیک، ارزیابی سریعی از نیازهای لرزه‌ای سازه به دست آورد. در کدهای لرزه‌ای مانند استاندارد 2800، این ضریب صرفاً به نوع سیستم مقاوم جانبی وابسته و با یک عدد ثابت معرفی شده است. این در حالی است که بین ضریب رفتار، شکل­‌پذیری (سطح عملکرد)، هندسه مدل و نوع زلزله (اعم از دور و نزدیک) رابطه وجود دارد. ارائه یک رابطه­‌ی دقیق بین مشخصات هندسی سازه، سطح عملکرد طراحی و ضریب رفتار در قاب‌های فولادی واگرا تحت اثر زلزله‌های نزدیک گسل، هدف اصلی مقاله حاضر است. بدین منظور، در ابتدا یک بانک داده‌­ی وسیع متشکل از 12960 داده با تنوع 3، 6، 9، 12، 15 و 20 طبقه، 3 تیپ سختی ستون و 3 درجه لاغری مهاربندی تولید و طراحی شده و در برابر 20 زلزله نزدیک گسل دارای اثرات جهت پذیری پیش‌رونده برای 4 سطح عملکردی مختلف تحلیل شدند. جهت تولید رابطه­‌ی پیشنهادی از 7533 داده آموزش در قالب الگوریتم بهینه‌­سازی ژنتیک استفاده شد. جهت اعتبارسنجی رابطه­‌ی پیشنهادی، 2515 داده آزمون، جهت محاسبه میانگین مربعات خطای رابطه در تابع برازش مورد استفاده قرار گرفت. نتایج حاصل از بررسی همبستگی رابطه‌­ی پیشنهادی نشان­‌دهنده­‌ی وجود دقت در ضرایب پیشنهادی است. همچنین برای اعتبارسنجی رابطه ارائه شده، مقایسه­‌ی بیشینه تغییر مکان غیرخطی سازه 5 طبقه فولادی طراحی شده بر مبنای روش نیرو، حاصل از رابطه‌­ی پیشنهادی و میانگین برآورده شده از تحلیل تاریخچه زمانی غیرخطی همان سازه، مؤید دقت رابطه‌­ی پیشنهادی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Applying Genetic Algorithm to estimate the behavior factor of EBF steel frames under pulse-type near-fault earthquakes, performance level approach

نویسندگان [English]

  • Seyed Abdonnabi Razavi 1
  • Navid Siahpolo 2
  • Mehdi Mahdavi Adeli 3
1 Department of Civil Engineering, Islamic Azad University, Ahvaz branch, Ahvaz, Iran
2 Assistant professor and head of higher education office/ACECR Institute for higher education-Khuzestan branch-Ahwaz
3 Assistant Professor, Department of Civil Engineering, Islamic Azad University, Ahvaz branch, Ahvaz, Iran
چکیده [English]

The most important feature of the behavior factor is that it allows the structural designer to be able to evaluate the structural seismic demand, using an elastic analysis based on force-based principles quickly. In seismic codes such as the 2800 Standard, this coefficient is merely dependent on the type of lateral resistance system and is introduced with a fixed number. However, there is a relationship between the behavior factor, ductility (performance level), structural geometric properties, and type of earthquake (near and far). The main purpose of this paper is to establish an accurate correlation between the geometrical characteristics of the structure, performance level and the behavior factor in eccentrically steel frames under earthquakes near-fault. For this purpose, a genetic algorithm is used. Initially, a wide database consisting of 12960 data with 3-, 6-, 9-, 12-, 15- and 20- stories, 3 column stiffness types, and 3 brace slenderness types were designed and analyzed under 20 pulse-type near-fault earthquakes for 4 different performance levels. To generate the proposed relation, 7533 training data in the form of genetic optimization algorithm were used. To validate the proposed relationship, 2515 test data were used to calculate the mean squared error of the relationship in the fitness function. The results of the correlation show accuracy of the proposed coefficients. Also, the comparison of the response of maximum inelastic displacement of 5stories EBF from the proposed correlation and the mean inelastic time history analysis confirms the accuracy of the estimated relationship.

کلیدواژه‌ها [English]

  • Genetic Algorithm
  • Behavior factor
  • Eccentric braced frame
  • Pulse-type near-fault earthquake
  • Performance level
[1] B. Standard, "Eurocode 8: Design of structures for earthquake resistance," Part, vol. 1, pp. 1998-1, 2005.
[2] Iranian national building code: Design and construction of steel structures-division 10, H. a. U. D. R. C. Road, Tehran, Iran, 2014.
[3] A. T. Council, Improvement of nonlinear static seismic analysis procedures. FEMA Region II, 2005.
[4] P. R. Santa-Ana and E. Miranda, "Strength reduction factors for multi-degree-of-freedom systems," in Proceedings of the 12th world conference on Earthquake Engineering, 2000, vol. 1446: Auckland, New Zealand.
[5] H. Krawinkler and M. Rahnama, "Effects of soft soils on design spectra," in 10th World Conference on Earthquake Engineering, 1992, vol. 10, pp. 5841-5846.
[6] J. F. Hall, T. H. Heaton, M. W. Halling, and D. J. Wald, "Near-source ground motion and its effects on flexible buildings," Earthquake spectra, vol. 11, no. 4, pp. 569-605, 1995.
[7] H. Krawinkler, J. Anderson, V. Bertero, W. Holmes, and C. Theil Jr, "Steel buildings," Earthquake Spectra, vol. 12, no. S1, pp. 25-47, 1996.
[8] N. Makris and C. J. Black, "Dimensional analysis of bilinear oscillators under pulse-type excitations," Journal of Engineering Mechanics, vol. 130, no. 9, pp. 1019-1031, 2004.
[9] M. Gerami and D. Abdollahzadeh, "Local and global effects of forward directivity," Građevinar, vol. 65, no. 11., pp. 971-985, 2013.
[10] A. Mashayekhi, M. Gerami, and N. Siahpolo, "Assessment of Higher Modes Effects on Steel Moment Resisting Structures under Near-Fault Earthquakes with Forward Directivity Effect Along Strike-Parallel and Strike-Normal Components," International Journal of Steel Structures, vol. 19, no. 5, pp. 1543-1559, 2019.
[11] M.-B. Prendes-Gero, A. Bello-García, J.-J. del Coz-Díaz, F.-J. Suárez-Domínguez, and P.-J. G. Nieto, "Optimization of steel structures with one genetic algorithm according to three international building codes," Revista de la Construcción. Journal of Construction, vol. 17, no. 1, pp. 47-59, 2018.
[12] A. Ede, O. Oshokoya, J. Oluwafemi, S. Oyebisi, and O. Olofinnade, "STRUCTURAL ANALYSIS OF A GENETIC ALGORITHM OPTIMIZED STEEL TRUSS STRUCTURE ACCORDING TO BS 5950," International Journal of Civil Engineering and Technology, vol. 9, no. 8, pp. 358-364, 2018.
[13] M. Asadbeyg, Genetic Algorithm (no. 1st). Tehran: Asad publication (in Persian), 2019.
[14] P. L. Iglesias, D. Mora, F. J. Martinez, and V. S. Fuertes, "Study of sensitivity of the parameters of a genetic algorithm for design of water distribution networks," Journal of Urban and Environmental Engineering, vol. 1, no. 2, pp. 61-69, 2007.
[15] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.
[16] M. N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi, "A comprehensive review of swarm optimization algorithms," PloS one, vol. 10, no. 5, 2015.
[17] S. No, "2800," (in Persian), Iranian Code of Practice for Seismic Resistant Design of Buildings, vol. 3, 2005.
[18] AISC-360-05, Structural design guide to AISC specifications for buildings, 0442269048, P. F. Rice and E. S. Hoffman, 2005.
[19] T. L. Karavasilis, N. Bazeos, and D. E. Beskos, "Estimation of seismic drift and ductility demands in planar regular X‐braced steel frames," Earthquake Engineering & Structural Dynamics, vol. 36, no. 15, pp. 2273-2289, 2007.
[20] A. Fakhraddini, S. Hamed, and M. J. Fadaee, "Peak displacement patterns for the performance-based seismic design of steel eccentrically braced frames," Earthquake Engineering and Engineering Vibration, vol. 18, no. 2, pp. 379-393, 2019.
[21] M. Bosco, E. M. Marino, and P. P. Rossi, "Modelling of steel link beams of short, intermediate or long length," Engineering structures, vol. 84, pp. 406-418, 2015.
[22] F. McKenna, "OpenSees: a framework for earthquake engineering simulation," Computing in Science & Engineering, vol. 13, no. 4, pp. 58-66, 2011.
[23] R. Pekelnicky, S. D. Engineers, S. Chris Poland, and N. D. Engineers, "ASCE 41-13: Seismic Evaluation and Retrofit Rehabilitation of Existing Buildings," Proceedings of the SEAOC, 2012.
[24] A. Tzimas, T. Karavasilis, N. Bazeos, and D. Beskos, "Extension of the hybrid force/displacement (HFD) seismic design method to 3D steel moment-resisting frame buildings," Engineering Structures, vol. 147, pp. 486-504, 2017.
[25] F. De Luca, I. Iervolino, and E. Cosenza, "Un-scaled, scaled, adjusted and artificial spectral matching accelerograms: displacement-and energy-based assessment," Proceedings of XIII ANIDIS,“L’ingegneria Sismica in Italia”, Bologna, Italy, 2009.
[26] J. Hancock, "The influence of duration and the selection and scaling of accelerograms in engineering design and assessment," Imperial College London (University of London), 2006.
[27] J. W. Baker, "Quantitative classification of near-fault ground motions using wavelet analysis," Bulletin of the Seismological Society of America, vol. 97, no. 5, pp. 1486-1501, 2007.
[28] M. Bosco and P. Rossi, "Seismic behaviour of eccentrically braced frames," Engineering Structures, vol. 31, no. 3, pp. 664-674, 2009.
[29] A. Kuşyılmaz and C. Topkaya, "Design overstrength of steel eccentrically braced frames," International Journal of Steel Structures, vol. 13, no. 3, pp. 529-545, 2013.
[30] P. Rossi and A. Lombardo, "Influence of the link overstrength factor on the seismic behaviour of eccentrically braced frames," Journal of Constructional Steel Research, vol. 63, no. 11, pp. 1529-1545, 2007.
[31] A. Committee, "Specification for structural steel buildings (ANSI/AISC 360-10)," American Institute of Steel Construction, Chicago-Illinois, 2010.