مدل‌سازی زمان سفر معابر شهری با استفاده از روش یادگیری ماشین گرگ صحرایی آمریکای شمالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 آدرس: تهران, خیابان حافظ, دانشگاه صنعتی امیرکبیر, دانشکده عمران و محیط زیست, اتاق 820

2 گروه راه و ترابری، دانشکده عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

3 دانشگاه صنعتی امیرکبیر

چکیده

زمان سفر به عنوان یکی از تأثیرگذارترین پارامترها در تحلیل عملکرد شبکه راه‌ها به جهت مدیریت و برنامه‌ریزی آتی شبکه و همچنین مهم‌ترین متغیر در فرآیند انتخاب مسیر استفاده‌کنندگان از راه می‌باشد. پیش بینی زمان سفر در طول چند دهه به عنوان یک موضوع پرکاربرد در زمینه شرایط دینامیک شبکه و سیستم‌­های هوشمند حمل و نقل به روش‌­های مختلفی انجام شده است. در این راستا، در این مقاله مدل‌سازی پیش بینی زمان سفر معابر شهری شریانی درجه یک و دو در ساعت غیر اوج صورت گرفته است. در وهله اول، طراحی آزمایش جهت نمونه برداری صورت گرفته و پارامترهای موثر بر زمان سفر معابر شهری بررسی شدند. سپس داده­‌ها به وسیله روش ماشین شناور و به کمک یک نرم افزار تلفن همراه در 6 معبر منتخب برداشت شدند. پس از آماده سازی داده‌­ها، متغیرهای زمان توقف تقاطع، تعداد خطوط و شیب به عنوان متغیرهای موثر در مدل پیش بینی زمان سفر شناخته شدند. یک روش جدید یادگیری ماشین مبتنی بر الگوریتم گرگ صحرایی آمریکای شمالی برای مدل‌سازی زمان سفر معرفی گردید و دقت مدل ساخته‌ شده با پنج مدل رگرسیونی مرسوم مقایسه گردید. بر اساس نتایج به دست آمده و بر مبنای بررسی 5 شاخص عملکردیِ در نظر گرفته شده برای ارزیابی صحت و دقت مدل‌ها، گرگ صحرایی آمریکای شمالی از تمامی مدل‌ها دقت بالاتری داشته و ضریب تعیین این مدل برای داده‌های آموزشی و آزمایشی به ترتیب برابر0/746 و 0/724 می‌باشد. همچنین این مدل 73% داده‌های آزمایشی را با خطای کمتر از 20 ثانیه پیش بینی می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Travel Time Modelling of Urban Roads By Application of Coyote Optimization-based Machine Learning Method

نویسندگان [English]

  • Amirhossein Fani 2
  • Hamed Naseri 3
1
2 Transportation Engineering, Department of Civil Engineering, Amirkabir University of Technology, Tehran, Iran
3 Amir Kabir University of Technology
چکیده [English]

Travel time prediction as an essential issue has been scrutinized in recent decades. To this end, various techniques are applied to estimate travel duration in dynamic networks and intelligent transportation systems. Accordingly, in this investigation, the prediction of travel time is considered by machine learning techniques. Initially, the experimental test is planned, and the travel time effective parameters are spotted. Subsequently, with the assistance of the floating car method, and My-tracks application, the data are collected in six elected roads. After data preparation, stop delay, grades, and the number of the lane are determined as the most effective travel time criteria. In this study, a novel machine learning technique based on the coyote optimization algorithm is introduced, and its precision is compared with five conventional regression models. Drawing on results, the accuracy of the coyote optimization algorithm-based machine learning technique is more than that of other prediction methods. The coefficient of determination of the introduced machine learning technique for training and testing data is equal to 0.746 and 0.724, respectively. Furthermore, coyote optimization algorithm-based machine learning estimates 73% of testing data with an error of fewer than 20 seconds.

کلیدواژه‌ها [English]

  • Travel time prediction
  • Urban road
  • Regression
  • Machine learning
  • Coyote optimization algorithm
[1] I. Sanaullah, M. Quddus, M. Enoch, Developing travel time estimation methods using sparse GPS data, Journal of Intelligent Transportation Systems, 20(6) (2016) 532-544.
[2] W. Chun-Hsin, H. Jan-Ming, D.T. Lee, Travel-time prediction with support vector regression, IEEE Transactions on Intelligent Transportation Systems, 5(4) (2004) 276-281.
[3] S.M. Turner, W.L. Eisele, R.J. Benz, D.J. Holdener, Travel time data collection handbook, United States. Federal Highway Administration, 1998.
[4] E. Jenelius, H.N. Koutsopoulos, Urban network travel time prediction based on a probabilistic principal component analysis model of probe data, IEEE Transactions on Intelligent Transportation Systems, 19(2) (2017) 436-445.
[5] C.I. Van Hinsbergen, F. Sanders, Short term traffic prediction models, in:  14th World Congress on International Transport Systrms, 2007, pp. A-X.
[6] J. Van Lint, Reliable travel time prediction for freeways, Netherlands TRAIL Research School, 2004.
[7] F. Zheng, H. Van Zuylen, X. Liu, A methodological framework of travel time distribution estimation for urban signalized arterial roads, Transportation science, 51(3) (2017) 893-917.
[8] D. Nikovski, N. Nishiuma, Y. Goto, H. Kumazawa, Univariate short-term prediction of road travel times, in:  Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005., IEEE, 2005, pp. 1074-1079.
[9] Y. Chen, H.J. Van Zuylen, Y. Qipeng, Travel time prediction on urban networks based on combining rough set with support vector machine, in:  2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM), IEEE, 2010, pp. 586-589.
[10] H.-E. Lin, R. Zito, M. Taylor, A review of travel-time prediction in transport and logistics, in:  Proceedings of the Eastern Asia Society for transportation studies, Bangkok, Thailand, 2005, pp. 1433-1448.
[11] L. Du, S. Peeta, Y.H. Kim, An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks, Transportation Research Part B: Methodological, 46(1) (2012) 235-252.
[12] J. Kwon, B. Coifman, P. Bickel, Day-to-day travel-time trends and travel-time prediction from loop-detector data, Transportation Research Record, 1717(1) (2000) 120-129.
[13] M. Yildirimoglu, K. Ozbay, Comparative evaluation of probe-based travel time prediction techniques under varying traffic conditions, 2012.
[14] H. Naseri, H. Jahanbakhsh, F. Moghadas Nejad, Developing a novel machine learning method to predict the compressive strength of fly ash concrete in different ages, AUT Journal of Civil Engineering,  (2019).
[15] E.M. Golafshani, A. Behnood, Estimating the optimal mix design of silica fume concrete using biogeography-based programming, Cement and Concrete Composites, 96 (2019) 95-105.
[16] S. Oh, Y.-J. Byon, K. Jang, H. Yeo, Short-term travel-time prediction on highway: A review on model-based approach, KSCE Journal of Civil Engineering, 22(1) (2018) 298-310.
[17] M.M.M. Abdel-Aal, Factors Affecting Road Capacity Under non-Ideal Conditions in Egypt Mounir Mahmoud Moghazy Abdel-Aal, Ahmed Ebrahim Abu El-Maaty, Hassan Abdel-rahman Abo Samra, Nova, 7(1) (2018) 1-13.
[18] G. Sil, A. Maji, S. Nama, A.K. Maurya, Operating speed prediction model as a tool for consistency based geometric design of four-lane divided highways, Transport, 34(4) (2019) 425-436.
[19] C. Vilarinho, J.P. Tavares, R.J. Rossetti, Intelligent traffic lights: Green time period negotiaton, Transportation research procedia, 22 (2017) 325-334.
[20] H.C. Manual, HCM2010, Transportation Research Board, National Research Council, Washington, DC,  (2010) 1207.
[21] J. Pierezan, L.D.S. Coelho, Coyote optimization algorithm: a new metaheuristic for global optimization problems, in:  2018 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2018, pp. 1-8.
[22] A. Golbraikh, A. Tropsha, Beware of q2!, Journal of molecular graphics and modelling, 20(4) (2002) 269-276.
[23] A. Tropsha, P. Gramatica, V.K. Gombar, The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models, QSAR & Combinatorial Science, 22(1) (2003) 69-77.