[1] I. Sanaullah, M. Quddus, M. Enoch, Developing travel time estimation methods using sparse GPS data, Journal of Intelligent Transportation Systems, 20(6) (2016) 532-544.
[2] W. Chun-Hsin, H. Jan-Ming, D.T. Lee, Travel-time prediction with support vector regression, IEEE Transactions on Intelligent Transportation Systems, 5(4) (2004) 276-281.
[3] S.M. Turner, W.L. Eisele, R.J. Benz, D.J. Holdener, Travel time data collection handbook, United States. Federal Highway Administration, 1998.
[4] E. Jenelius, H.N. Koutsopoulos, Urban network travel time prediction based on a probabilistic principal component analysis model of probe data, IEEE Transactions on Intelligent Transportation Systems, 19(2) (2017) 436-445.
[5] C.I. Van Hinsbergen, F. Sanders, Short term traffic prediction models, in: 14th World Congress on International Transport Systrms, 2007, pp. A-X.
[6] J. Van Lint, Reliable travel time prediction for freeways, Netherlands TRAIL Research School, 2004.
[7] F. Zheng, H. Van Zuylen, X. Liu, A methodological framework of travel time distribution estimation for urban signalized arterial roads, Transportation science, 51(3) (2017) 893-917.
[8] D. Nikovski, N. Nishiuma, Y. Goto, H. Kumazawa, Univariate short-term prediction of road travel times, in: Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005., IEEE, 2005, pp. 1074-1079.
[9] Y. Chen, H.J. Van Zuylen, Y. Qipeng, Travel time prediction on urban networks based on combining rough set with support vector machine, in: 2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM), IEEE, 2010, pp. 586-589.
[10] H.-E. Lin, R. Zito, M. Taylor, A review of travel-time prediction in transport and logistics, in: Proceedings of the Eastern Asia Society for transportation studies, Bangkok, Thailand, 2005, pp. 1433-1448.
[11] L. Du, S. Peeta, Y.H. Kim, An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks, Transportation Research Part B: Methodological, 46(1) (2012) 235-252.
[12] J. Kwon, B. Coifman, P. Bickel, Day-to-day travel-time trends and travel-time prediction from loop-detector data, Transportation Research Record, 1717(1) (2000) 120-129.
[13] M. Yildirimoglu, K. Ozbay, Comparative evaluation of probe-based travel time prediction techniques under varying traffic conditions, 2012.
[14] H. Naseri, H. Jahanbakhsh, F. Moghadas Nejad, Developing a novel machine learning method to predict the compressive strength of fly ash concrete in different ages, AUT Journal of Civil Engineering, (2019).
[15] E.M. Golafshani, A. Behnood, Estimating the optimal mix design of silica fume concrete using biogeography-based programming, Cement and Concrete Composites, 96 (2019) 95-105.
[16] S. Oh, Y.-J. Byon, K. Jang, H. Yeo, Short-term travel-time prediction on highway: A review on model-based approach, KSCE Journal of Civil Engineering, 22(1) (2018) 298-310.
[17] M.M.M. Abdel-Aal, Factors Affecting Road Capacity Under non-Ideal Conditions in Egypt Mounir Mahmoud Moghazy Abdel-Aal, Ahmed Ebrahim Abu El-Maaty, Hassan Abdel-rahman Abo Samra, Nova, 7(1) (2018) 1-13.
[18] G. Sil, A. Maji, S. Nama, A.K. Maurya, Operating speed prediction model as a tool for consistency based geometric design of four-lane divided highways, Transport, 34(4) (2019) 425-436.
[19] C. Vilarinho, J.P. Tavares, R.J. Rossetti, Intelligent traffic lights: Green time period negotiaton, Transportation research procedia, 22 (2017) 325-334.
[20] H.C. Manual, HCM2010, Transportation Research Board, National Research Council, Washington, DC, (2010) 1207.
[21] J. Pierezan, L.D.S. Coelho, Coyote optimization algorithm: a new metaheuristic for global optimization problems, in: 2018 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2018, pp. 1-8.
[22] A. Golbraikh, A. Tropsha, Beware of q2!, Journal of molecular graphics and modelling, 20(4) (2002) 269-276.
[23] A. Tropsha, P. Gramatica, V.K. Gombar, The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models, QSAR & Combinatorial Science, 22(1) (2003) 69-77.