رابطه‌سازی یک جزء ساده‌ی کارا در تحلیل استاتیکی، کمانش و ارتعاش آزاد تیر تیموشنکو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده‌ی فنی و مهندسی، دانشگاه تربت حیدریه، تربت حیدریه، ایران

2 گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد لارستان، لارستان، ایران

چکیده

تیرها به‌ طور گسترده‌ای در سازه‌های مهندسی کاربرد دارند. در این مقاله یک جزء ساده‌ی کارای تیری رابطه‌سازی خواهد شد. برای تحلیل تیرها تئوری­های متفاوتی همچون اولر-برنولی، تیموشنکو و برش مرتبه‌ی بالا ارائه شده است. در رابطه‌سازی جزء پیشنهادی از برقراری معادله‌ی حاکم بر تیر تیموشنکو بهره‌جویی می‌شود. این‌کار، افزون بر توانمندسازی جزء نو، شمار مجهول‌ها را خواهد کاست. جزء پیشنهادی تنها دو گره و در هر گره تنها دو درجه آزادی دارد. همچنین، از چند جمله‌ای مرتبه سوم و دوم، به ترتیب، برای میدان‌های جابه‌جایی و دوران استفاده می‌شود. پس از محاسبه‌ی ماتریس تابع‌های شکل جزء پیشنهادی، معادله‌های حاکم بر مسئله‌های استاتیکی، ارتعاش آزاد و کمانش برپا خواهند شد. در پایان، برای اثبات کارایی بالای جزء پیشنهادی، تحلیل‌های استاتیکی، ارتعاش آزاد و کمانش بر روی چندین مسئله انجام خواهد گرفت. در این مسئله‌ها از انواع مختلف شرایط تکیه‌گاهی استفاده خواهد شد. همچنین، با هدف سنجش توانایی‌های جزء پیشنهادی در تیرهای نازک و ضخیم، پاسخ‌ها برای تیر با نسبت‌های طول به ضخامت متفاوت حساب می‌شوند. در تحلیل ارتعاش آزاد پاسخ مودهای بالاتر نیز بررسی می‌گردند. آزمون‌های عددی، سرعت بالای همگرایی و دقت بالای جزء پیشنهادی و همچنین نبود مشکل قفل برشی را در تمامی مسئله‌های استاتیکی، ارتعاش آزاد و کمانش به اثبات می‌رسانند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Formulating a new efficient simple element for statics, buckling and free vibration analysis of Timoshenko’s beam

نویسندگان [English]

  • Majid Yaghoobi 1
  • Mohsen Sedaghatjo 1
  • Reyhaneh Alizadeh 1
  • Mohammad Karkon 2
1 Department of civil engineering, Faculty of engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran.
2 Civil Engineering Department, Larestan Branch Islamic Azad University, Larestan, Iran.
چکیده [English]

The beams are really useful for a large number of engineering structures. In this article, a simple, robust beam element will be formulated. Other researchers utilized several theories such as Euler-Bernoulli, Timoshenko and higher-order shear for analyzing the beams. The proposed formulation will be written based on satisfying the equilibrium equation. Using the equilibrium equation reduces the number of unknowns in addition to improving the efficiency of the new element. The suggested element has only two nods and two degrees of freedom per node. The third and second-order polynomials will be used for vertical displacement and rotation fields, respectively. After calculating the matrix of shape functions, the governing equations of statics, free vibration and buckling analysis can be written. Finally, using the suggested element, static analysis, free vibration and buckling were performed on several problems. To prove the efficiency of the new element, a large number of benchmark tests will be utilized. These numerical tests have various support conditions and different aspect ratios. With the help of these tests, rapid convergence and high accuracy of the proposed element will be shown. The new element has high efficiency in all of the static, free vibration and buckling analysis for both thin and thick beams besides its simplicity. Good element answers of other researchers will be available to have a better comparison.

کلیدواژه‌ها [English]

  • Beam element
  • Equilibrium equation
  • Static analysis
  • free vibration
  • Buckling
[1] G. Cowper, The shear coefficient in Timoshenko’s beam theory,  (1966).
[2] J.R. Hutchinson, On Timoshenko beams of rectangular cross-section, J. Appl. Mech., 71(3) (2004) 359-367.
[3] D. Zhou, Free vibration of multi-span Timoshenko beams using static Timoshenko beam functions, Journal of Sound and Vibration, 241(4) (2001) 725-734.
[4] X.-F. Li, Z.-W. Yu, H. Zhang, Free vibration of shear beams with finite rotational inertia, Journal of Constructional Steel Research, 67(10) (2011) 1677-1683.
[5] S.J. Lee, K.S. Park, Vibrations of Timoshenko beams with isogeometric approach, Applied Mathematical Modelling, 37(22) (2013) 9174-9190.
[6] H. Arvin, Free vibration analysis of micro rotating beams based on the strain gradient theory using the differential transform method: Timoshenko versus Euler-Bernoulli beam models, European Journal of Mechanics-A/Solids, 65 (2017) 336-348.
[7] T. Huang, The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions,  (1961).
[8] Y.-S. HE, Free Vibration analysis of continuous Timoshenko beams by dynamic stiffness method, Advanced topics in vibrations,  (1987) 43-48.
[9] R. Davis, R. Henshell, G. Warburton, A Timoshenko beam element, Journal of Sound and Vibration, 22(4) (1972) 475-487.
[10] K. Chan, X. Wang, Free vibration of a Timoshenko beam partially loaded with distributed mass, Journal of Sound and Vibration, 206(3) (1997) 353-369.
[11] J. Lee, W. Schultz, Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method, Journal of Sound and Vibration, 269(3-5) (2004) 609-621.
[12] A. Ferreira, G. Fasshauer, Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method, Computer Methods in Applied Mechanics and Engineering, 196(1-3) (2006) 134-146.
[13] L.B. da Veiga, C. Lovadina, A. Reali, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Computer Methods in Applied Mechanics and Engineering, 241 (2012) 38-51.
[14] K. Torabi, A.J. Jazi, E. Zafari, Exact closed form solution for the analysis of the transverse vibration modes of a Timoshenko beam with multiple concentrated masses, Applied Mathematics and Computation, 238 (2014) 342-357.
[15] B. Zhang, Y. He, D. Liu, Z. Gan, L. Shen, Non-classical Timoshenko beam element based on the strain gradient elasticity theory, Finite elements in analysis and design, 79 (2014) 22-39.
[16] Y.S. Hsu, Enriched finite element methods for Timoshenko beam free vibration analysis, Applied Mathematical Modelling, 40(15-16) (2016) 7012-7033.
[17] J. Reddy, On locking-free shear deformable beam finite elements, Computer methods in applied mechanics and engineering, 149(1-4) (1997) 113-132.
[18] T. Kocatürk, M. Şimşek, Free vibration analysis of Timoshenko beams under various boundary conditions, Sigma, 1 (2005) 30-44.
[19] M. Şi̇mşek, T. Kocatürk, Free vibration analysis of beams by using a third-order shear deformation theory, Sadhana, 32(3) (2007) 167-179.
[20] V. Kahya, M. Turan, Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory, Composites Part B: Engineering, 109 (2017) 108-115.
[21] T.-K. Nguyen, T.T.-P. Nguyen, T.P. Vo, H.-T. Thai, Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory, Composites Part B: Engineering, 76 (2015) 273-285.
[22] T.P. Vo, H.-T. Thai, T.-K. Nguyen, A. Maheri, J. Lee, Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory, Engineering Structures, 64 (2014) 12-22.
[23] T.P. Vo, H.-T. Thai, T.-K. Nguyen, F. Inam, J. Lee, A quasi-3D theory for vibration and buckling of functionally graded sandwich beams, Composite Structures, 119 (2015) 1-12.
[24] S.-R. Li, R.C. Batra, Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler–Bernoulli beams, Composite Structures, 95 (2013) 5-9.
[25] A. Özütok, E. Madenci, Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method, International Journal of Mechanical Sciences, 130 (2017) 234-243.
[26] T.P. Vo, H.-T. Thai, Static behavior of composite beams using various refined shear deformation theories, Composite Structures, 94(8) (2012) 2513-2522.
[27] W. Bickford, B. WB, A consistent higher order beam theory,  (1982).
[28] P. Heyliger, J. Reddy, A higher order beam finite element for bending and vibration problems, Journal of sound and vibration, 126(2) (1988) 309-326.