کنترل غیرمتمرکز سازه‌های ساختمانی برشی بلند در برابر گسیختگی‌های سنسور‌‌‌ها و عدم قطعیت در تحریکات زلزله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 سازه، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

2 تبریز-دانشگاه تبریز-بلوار 29 بهمن- دانشکده مهندسی عمران- گروه سازه

چکیده

این مقاله از کنترلر مقاوم ∞H با فیدبک استاتیکی خروجی و تئوری نامساوی‌های ماتریسی خطی(LMI )و نیز تعدادی تغییرات در متغیرهای LMI برای مقاوم سازی سازه‌های ساختمانی برشی در مقابل انواع عدم قطعیت‌ها و نیز نیروهای دینامیکی زلزله و باد استفاده می‌کند. برای حفظ عملکرد کل سیستم با وجود از کار افتادن کنترلر مرکزی، جلوگیری از جابه جایی حجم زیادی از داده‌ها بین سنسورها و کنترلر و نیز مسائل اقتصادی، بحث جایگزینی روش کنترل متمرکز با کنترل غیر متمرکز درانواع مختلف شامل کنترل کاملا غیرمتمرکز و کنترل غیرمتمرکزجزئی درگیر و غیردرگیر مورد مطالعه قرار می‌گیرد و سپس میزان مقاومت روش مذکور هم در کنترل متمرکز و هم در کنترل‌های غیرمتمرکز در برابر نیروهای دینامیکی مانند زلزله، عدم قطعیت در تحریکات زلزله و شکست سنسورها ارزیابی می‌شود و با یکدیگر مقایسه می‌شود. در نهایت پاسخ‌های حاصل از الگوریتم کنترلی مورد استفاده با نتایج حاصل از کنترل رگولاتور درجه دوم خطی (LQR )مقایسه می‌شود. برای این ارزیابی دو مثال عددی حل شده‌است. یک سازه‌ی برشی 5 طبقه و یک سازه‌ی برشی 20 طبقه. بر اساس نتایج، الگوریتم مذکور کاملا در برابر گسیختگی سنسورها مقاوم است، همچنین کنترلرهای غیرمتمرکز نتایج بسیار نزدیکی به کنترلر متمرکز دارند. عدم قطعیت تحریکات زلزله تغییراتی در پاسخ‌ها ایجاد می‌کند ولی باز هم پاسخ‌های کنترل شده به طور قابل توجهی کمتر از پاسخ‌های کنترل نشده هستند. لازم به ذکر است که روش مورد استفاده پاسخ‌ها را به صورت قابل ملاحظه‌ای کمتر از روش کنترلی LQR کاهش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Decentralized control of tall shear structures against sensor failures and uncertainty in earthquake excitations

نویسندگان [English]

  • Roya Raji 1
  • Hosein Ghaffarzadeh 2
  • Ali Hadidi 1
1 Structure, Civil engineering faculty, Tabriz university, Tabriz, Iran
2 Tabriz, Tabriz university, civil engineering faculty
چکیده [English]

This paper uses centralized and decentralized H∞ controllers with static output feedback and linear matrix inequality theory (LMI) as well as a number of changes in LMI variables to retrofit shear structures against a variety of uncertainties. The robustness of this method is evaluated both in centralized and decentralized controls against dynamic forces such as earthquake, uncertainty in earthquake excitation and sensor failure, then structural responses are compared. Finally, the responses of the used control algorithm are compared with the results of the linear quadratic regulator controller (LQR). There are two structural models, including 5 and 20 stories shear structures. The results indicate good robustness of the used control algorithm to the failure of the sensors, the clear difference in response values of the applied algorithm compared to the LQR method, and near results in centralized and decentralized controllers. Although the earthquake excitations uncertainty changes the responses but still controlled responses are clearly less than the uncontrolled responses.

کلیدواژه‌ها [English]

  • Active control؛ Decentralized control؛ Sensor failure
  • Uncertainty
  • Earthquake excitation
[1] G.W. Housner, L.A. Bergman, T.K. Caughey, A.G. Chassiakos, R.O. Claus, S.F. Masri, R.E. Skelton, T. Soong, B. Spencer, J.T.J.J.o.e.m. Yao, Structural control: past, present, and future, 123(9) (1997) 897-971.
[2] A. Preumont, K. Seto, Active control of structures, John Wiley & Sons, 2008.
[3] F.J.S.S. Ubertini, Systems, Active feedback control for cable vibrations, 4(4) (2008) 407-428.
[4] S. Korkmaz, Structures, A review of active structural control: challenges for engineering informatics, Computers, 89(23-24) (2011) 2113-2132.
[5] H.J.S.S. Ghaffarzadeh, Systems, Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step, 12(6) (2013) 595-617.
[6] M. Askari, J. Li, B.J.S.S. Samali, Systems, Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms, 18(5) (2016) 1005-1028.
[7] A. Younespour, H.J.S.S. Ghaffarzadeh, SYSTEMS, Semiactive control of seismically excited structures with variable orifice damper using block pulse functions, 18(6) (2016) 1111-1123.
[8] A.G. Muthalif, H.B. Kasemi, N. Nordin, M. Rashid, M.K.M.J.S.S. Razali, SYSTEMS, Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller, 20(1) (2017) 85-97.
[9] M.T. Braz-Cesar, R.J.S.s. Barros, systems, Semi-active fuzzy based control system for vibration reduction of a sdof structure under seismic excitation, 4 (2018) 389-395.
[10] T. Manjunath, B.J.S.S. Bandyopadhyay, Systems, Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam, 1(3) (2005) 283-308.
[11] F.Y. Cheng, H. Jiang, K. Lou, Smart structures: innovative systems for seismic response control, CRC Press, 2008.
[12] S. Beheshti-Aval, M.J.S.S. Lezgy-Nazargah, Systems, Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams, 6(8) (2010) 921-938.
[13] K. Dhanalakshmi, M. Umapathy, D. Ezhilarasi, B.J.S.S. Bandyopadhyay, Systems, Design and implementation of fast output sampling feedback control for shape memory alloy actuated structures, 8(4) (2011) 367-384.
[14] Z. Cao, Z.J.S.E. Lei, Mechanics, Feedback control design for intelligent structures with closely-spaced eigenvalues, 52(5) (2014) 903-918.
[15] C.-H. Loh, C.-M. Chang, Application of centralized and decentralized control to building structure: analytical study, Journal of Engineering Mechanics, 134(11) (2008) 970-982.
[16] J. Rubió‐Massegú, F. Palacios‐Quiñonero, J.J.E.E. Rossell, S. Dynamics, Decentralized static output‐feedback H∞ controller design for buildings under seismic excitation, 41(7) (2012) 1199-1205.
[17] J.P. Lynch, K.H. Law, Decentralized energy market-based structural control, Structural Engineering and Mechanics, 17(3-4) (2004) 557-572.
[18]Y. Wang, R.A. Swartz, J.P. Lynch, K.H. Law, K.-C. Lu, C.-H.J.S.S. Loh, Systems, Decentralized civil structural control using real-time wireless sensing and embedded computing, 3(3) (2007) 321-340.
[19] B. Chen, S. Nagarajaiah, Structural damage detection using decentralized controller design method, Smart structures and systems, 4(6) (2008) 779-794.
[20] L.J.A.r.i.c. Bakule, Decentralized control: An overview, 32(1) (2008) 87-98.
[21] Y. Lei, Y.J.F.o.M.E.i.C. Lin, New decentralized control technique based on substructure and LQG approaches, 4(4) (2009) 386.
[22] T.-W. Ma, J. Johansen, N.-S. Xu, H.T. Yang, Improved decentralized method for control of building structures under seismic excitation, Journal of engineering mechanics, 136(5) (2010) 662-673.
[23] J.-P. Jiang, D.-X.J.J.o.I.M.S. Li, Structures, Decentralized robust vibration control of smart structures with parameter uncertainties, 22(2) (2011) 137-147.
[24] H. Du, N. Zhang, B. Samali, F.J.E.S. Naghdy, Robust sampled-data control of structures subject to parameter uncertainties and actuator saturation, 36 (2012) 39-48.
[25] Y. Lei, D. Wu, Y. Lin, A decentralized control algorithm for large‐scale building structures, Computer‐Aided Civil Infrastructure Engineering, 27(1) (2012) 2-13.
[26] Y.J. Cha, A.K.J.S.C. Agrawal, H. Monitoring, Decentralized output feedback polynomial control of seismically excited structures using genetic algorithm, 20(3) (2013) 241-258.
[27] M. Ruiz-Sandoval, E. Morales, Complete decentralized displacement control algorithm, Smart Structures and Systems, 11(2) (2013) 163-183.
[28] X.-G. Yan, S.K.J.J.o.t.F.I. Spurgeon, Decentralised delaydependent static output feedback variable structure control, 351(4) (2014) 2033-2047.
[29] N. Giron, M.J.S.C. Kohiyama, H. Monitoring, A robust decentralized control method based on dimensionless parameters with practical performance criterion for building structures under seismic excitations, 21(6) (2014) 907-925.
[30] M. Kohiyama, M. Yoshida, LQG design scheme for multiple vibration controllers in a data center facility, Earthquake and Structures, 6(3) (2014) 281-300.
[31] S.-Y. Chu, S.-W. Yeh, L.-Y. Lu, C.-H.J.E. Peng, Structures, Experimental verification of leverage-type stiffnesscontrollable tuned mass damper using direct output feedback LQR control with time-delay compensation, 12(4) (2017) 425-436.
[32] H. Ghaffarzadeh, K.J.S.S. Aghabalaei, Systems, Adaptive fuzzy sliding mode control of seismically excited structures, 19(5) (2017) 577-585.
[33] Y. Yu, L. Li, X. Leng, G. Song, Z. Liu, J.J.S.S. Ou, SYSTEMS, A wireless decentralized control experimental platform for vibration control of civil structures, 19(1) (2017) 47-56.
[34] W. Zhang, Y. Chen, H.J.J.o.S. Gao, Vibration, Energy-topeak control for seismic-excited buildings with actuator faults and parameter uncertainties, 330(4) (2011) 581-602.
[35] H. Zhang, R. Wang, J. Wang, Y.J.M. Shi, Robust finite frequency H∞ static-output-feedback control with application to vibration active control of structural systems, 24(4) (2014) 354-366.
[36] A.Y. Fallah, T. Taghikhany, Structures, Sliding mode fault detection and fault-tolerant control of smart dampers in semi-active control of building structures, Smart Materials, 24(12) (2015) 125030.
[37] I. Venanzi, Robust optimal design of tuned mass dampers for tall buildings with uncertain parameters, Structural Multidisciplinary Optimization, 51(1) (2015) 239-250.
[38] a.M. K. Chaker, b. Sbartai, Robust control of a seismic excited building facing to structured uncertainties, WSEAS Transactions on Systems, 16 (2017) 26-19.
[39] A.T. Giaralis, Optimal tuned mass‐damper‐inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria, Structural Control Health Monitoring, 25(2) (2018) e2082.
[40] Y. Lei, D.-T. Wu, S.-Z.J.E.S. Lin, Integration of decentralized structural control and the identification of unknown inputs for tall shear building models under unknown earthquake excitation, 52 (2013) 306-316.
[41] W. Schmitendorf, F. Jabbari, J.J.E.e. Yang, s. dynamics, Robust control techniques for buildings under earthquake excitation, 23(5) (1994) 539-552.
[42] Z. Cao, B. Wen, Z. Kuang, Feedback control of intelligent structures with uncertainties and its robustness analysis, Structural Engineering and Mechanics, 16(3) (2003) 327340.
[43] C. Lim, Y. Park, S.J.J.o.S. Moon, Vibration, Robust saturation controller for linear time-invariant system with structured real parameter uncertainties, 294(1-2) (2006) 1-14.
[44] A.L. Materazzi, F.J.S.C. Ubertini, H. Monitoring, Robust structural control with system constraints, 19(3) (2012) .094-274
[45] A. Morales, J. Rongong, N.J.M.S. Sims, S. Processing, A finite element method for active vibration control of uncertain structures, 32 (2012) 79-93.