مقایسه کارائی مدل‌های تحلیلی VART، Gaussian و ADZ به منظور تشخیص موقعیت منبع آلودگی در رودخانه‌ها

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی عمران-دانشگاه مراغه

چکیده

به منظور مقایسه کارائی سه مدل تحلیلی Gaussian، VART و ADZ در تخمین موقعیت ورود آلاینده‌ها به رودخانه، از یک سری داده آزمایشگاهی و چندین سری داده صحرائی که توسط USGS در رودخانه‌های مونوکیسی و آنتیاتیم برداشت شده بود، استفاده گردید. حل تحلیلی برای شرایط تزریق آنی برای مدل VART و رابطه گشتاور مرکزی مرتبه دوم مدل‌های Gaussian و ADZ بدین منظور استفاده شد و برای تمامی داده‌های آزمایشگاهی و صحرائی، ابتدا پارامترهای مدل‌ها استخراج شد سپس با استفاده از این پارامترها و با به کارگیری روابط مورد اشاره، تحقیق حاضر انجام شد. نتایج نشان داد که دقت مدل VART برای تشخیص منبع آلاینده برای داده‌های آزمایشگاهی برابر با 25 % و برای داده‌های رودخانه‌ای برابر با 4/8 % می‌باشد. همچنین خطای نسبی مدل قوسی نیز برای تشخیص موقعیت آلاینده رودخانه‌ای برابر با 1/65 % و همچنین میزان خطای نسبی مدل ADZ برابر با 14 %محاسبه گردید که مشاهده می‌شود که دقت روش قوسی بسیار مطلوب می‌باشد. نتایج تحقیق موید این نکته بود که در عین حال که هر سه روش از کارائی مناسبی برای تشخیص منبع آلاینده در رودخانه‌ها برخوردار هستند ولی رابطه قوسی هم از دیدگاه تعداد پارامترها و هم از دیدگاه دقت محاسباتی به دو مدل دیگر برتری دارد. همچنین به منظور ارزیابی برازش منحنی‌های غلظت-زمان آزمایشگاهی و صحرائی بر روی منحنی‌های تحلیلی نیز از شاخص نش-شاتکلیف استفاده گردید و مقدار متوسط آن برای تمامی داده‌ها برابر با 0/97 محاسبه شد که نشان دهنده دقت بسیار مطلوب منحنی‌های تحلیلی بازسازی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A comparison of the applicability of the theoretical VART, Gaussian, and ADZ models for pollution source identification in the rivers

نویسنده [English]

  • Jafar Chabokpour
Civil engineering department, university of Maragheh
چکیده [English]

A series of experimental data and two series of field data which have been extracted by USGS in the MONOCACY River and ANTIETAM creek have been utilized to compare source identification accuracy of the Gaussian, ADZ, and VART models. To achieve the object of the study, the theoretical solution of the VART model for sudden release, and the second-order central moment equation of the Gaussian and ADZ models have been operated For all of the experimental and field data series, firstly, all of the model parameters have been computed and then by operation of the extracted parameters and the mentioned relationships, the accuracy of them have been calculated. The results showed that the accuracy of the VART model for experimental and field data is 25% and 4.8% respectively. Also, the average relative errors of the Gaussian and ADZ models are 1.65% and 14%, respectively, which confirms the desirable accuracy of the Gaussian model. The results of the present study have been revealed that the Gaussian model in both of the model parameter numbers and the calculation accuracy is superior to the others. Also, to assess the goodness of fit between experimental and field data series and the theoretical Breakthrough curves, the average Nash-Sutcliffe parameters have been calculated about 0.97, which exhibits the favorable goodness in the fits.

کلیدواژه‌ها [English]

  • Tracer
  • Location of the Pollution Source
  • VART Model
  • Gaussian Model
  • ADZ model
  1. [1] Bansal, M. K., Dispersion in natural streams, Journal of the Hydraulics Division, 97HY11, (1971) 1867–1886.

    [2] Beer, T., Young, P.C., Longitudinal dispersion in natural streams, ASME Journal of Engineering, 109 (1983) 1049–

    1.  

    [3] Boano, F., Revelli, R., Ridolfi, L., Source identification in river pollution problems: A geostatistical approach, Water resources research, 41(7) (2005) W07023.

    [4]Chabokpour, j., Samadi, A. & Merikhi, M., Application of method of temporal moments to the contaminant exit breakthrough curves from rockfill media, Iranian journal of soil and water research, 49(3) (2018) 629-640 (in persian).

    [5] Chabokpour, j., Application of Hybrid Cells in Series Model in the Pollution Transport through Layered Material, Pollution, 5(3) (2019) 473-486.

    [6]Cheng, W. P., Jia, Y., Identification of contaminant point source in surface waters based on backward location probability density function method. Advances in water resources, 33(4) (2010) 397-410.

    [7] Day, T. J., Longitudinal dispersion in natural channels, Water Resources Research, 11 (1975) 909–918.

    [8] Deng, Z. Q., Jung H. S., Variable residence time-based model for solute transport in streams, Advances in water resources, 45 (2009) W03415, 1-15.

    [9] Deng, Z.-Q., Jung, H.S., Ghimire, B., Effect of channel size on solute residence time distributions in rivers, Advances in water resources, 33(9) (2010) 1118-1127.

    [10] Elder, J. W., The dispersion of marked fluid in turbulent shear flow Journal of Fluid Mechanics, 54 (1959) 544– 560.

    [11] Elhadi, N. D., Davar, K. S., Longitudinal dispersion for flow over rough beds, journal of the Hydraulics Division, 1024 (1976) 483–498.

    [12] Elhadi, N. D., Harrington, A., Hill, I., Lau, Y. L., Krishnappan, B. G., River mixing-A state-of-the-art report.” Canadian Journal of Civil Engineering, 1111 (1984) 585–609.

    [13] Fischer, H. B. The mechanics of dispersion in natural streams, journal of the Hydraulics Division, 936 (1967) .612–781

    [14] Fischer, H. B., Imberger, J., List, E. J., Koh, R. C. Y.  Brooks, N. H., Mixing in inland and coastal waters, Academic, New York, (1979).

    [15] Fulvio, B., Roberto, Luca, R., Source identification in river pollution problems: a geostatistical approach. Water resources research, 41(7) (2005) 23–30.

    [16] Ghosh, N. C., Mishra, G. C., Ojha, C.S.P., A hybridcells in-series model for solute transport in a river, Journal of Environmental Engineering, 13010 (2004) 1198–1209.

    [17] Ghosh, N. C., Mishra, G. C., Kumarasamy, M., HybridCells-in-Series Model for Solute Transport in Streams and Relation of Its Parameters with Bulk Flow Characteristics, Journal of Hydraulic Engineering, 134 (2008) 497-502.

    [18] Holley, E.R. Tsai, Y.H., Comment on ‘Longitudinal dispersion in natural channels’ by T. J. Day., Water Resources Research., 3 (1971) 505–510.

    [19] Nikolaos, D.K., Michael, P., Site and optimization of contaminant sources in surface water system. Journal of environmental engineering, 122 (1996) 917–923.

    [20] Roseanna, M. Neupauer, J.L.W., Numerical implementation of a backward probabilistic model of ground water contamination. Groundwater, 42 (2) (2004) 175–188.

    [21] Schmid, B. H., Temporal moments routing in streams and rivers with transient storage, Advances in Water Resources, 26 (2003) 1021–1027.

    [22] Snodgrass, M. F., Kitanidis, P.K., A geostatistical approach to contaminant source identification. Water resources research, 33 (4) (1997) 537-546.

    [23] Taylor, G.I., The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. London, Ser. A, 219 (1954) 446–468.

    [24] Tong, Y., Deng Z.Q., Moment-Based Method for Identification of Pollution Source in Rivers, Journal of environmental engineering, 141(10) (2012) 1-27.

    [25] Wang, Z.W. Xu, D.H., Uniqueness and numerical methods for point source pollution of watershed. Journal of Ningxia University (Natural Science Edition), 27 (2) (2006) 124–129.

    [26] Wang, Z.W., Qiu, S.F., Stability and numerical simulation of pollution point source identification in a watershed, Chinese Journal of Hydrodynamics, 23 (4) (2008) 364– 371.

    [27] Wang, L., Wang, Y., Wu, C.D., Xie, Q.J., Pollution source fingerprinting system of accident water pollution based on GIS in chemical area, Environmental Science and Technology, 22(6) (2009) 57–60.

    [28] Xue, G., P., Wang, C., The determination of source for drinking water pollution accident. Environmental Monitoring and Assessment, 9 (6) (1997) 20–22.

    [29] Yin, F.L., Li, G.S., Jia, G.Z., An inverse problem of determining magnitudes of multi-point sources in the diffusion equation. Shandong University of Science and Technology, 25(2) (2011) 1–5.

    [30] Zhang, T.F., Chen, Q., Identification of contaminant sources in enclosed environments by inverse CFD modeling. Indoor air, 17 (3) (2007) 167-177.

    [31] Zhang, S.P., Xin, X.K., Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm. Applied Water Sciences, 7 (2017) 1955-1963.