تحلیل طیفی سازه ها با استفاده از تئوری موجک و مدت زمان حرکت قوی زمین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فنی مهندسی،دانشگاه شهرکرد

2 دانشیار گروه مهندسی عمران، دانشکدة فنی مهندسی، دانشگاه شهرکرد

چکیده

در این مقاله برای اولین بار به بررسی همزمان تبدیل موجک و مفهوم زمان حرکت قوی زمین در تحلیل طیفی سازه‌ها استفاده شده است. هدف از این پژوهش بهینه‌سازی محاسبات مربوط به طیف زلزله ی اصلی می‌باشد. بر این اساس زلزله ی مورد نظر تا 5 مرحله فیلتر می‌شود. در هرمرحله از فیلتر دو موج تقریبات و جزئیات حاصل می‌شود. به دلیل این که موج تقریبات به زلزله‌ی اصلی نزدیک تراست از این موج برای محاسبات استفاده می‌شود. به همین دلیل در هرمرحله از فیلترتعدادرکوردهای زلزله نصف مرحله‌ی قبل می‌شود. پس از آن براساس مفهوم مدت زمان حرکت قوی زمین در موج زلزله‌ی اصلی و موج‌های به دست آمده از فیلترموجکی، قسمتی از زلزله که دارای جنبش قوی است جدا می‌شود. پس در این مرحله نیز یک تقلیل در رکوردهای زلزله انجام گرفت. پس از آن طیف هریک از موج های حاصل شده رسم می‌شود. در انتها یک سازه ی دوبعدی10طبقه و یک سازه ی سه بعدی5طبقه باهریک از طیف‌های به دست آمده از دو مفهوم تبدیل موجکی گسسته و مدت زمان جنبش نیرومند زمین تحلیل می‌شود. نتایج نشان می‌دهد که با تقلیل محاسبات مربوط به طیف به اندازه‌ی بیش از 93 درصد می‌توان سازه را با خطایی کمتر از 4 درصد تحلیل نمود. می‌توان گفت که تکنیک ارائه شده یکی ازبهترین تکنیک‌های ارائه شده دربهینه سازی محاسبات مربوط به تحلیل طیفی سازه‌ها است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spectral analysis of structures using wavelet theory and concept of time of strong ground motion

نویسندگان [English]

  • noorollah majidi 1
  • Ali Heidari 2
1 Faculty of Engineering, Shahrekord University
2 Associate Professor of Civil Engineering, Shahrekord University
چکیده [English]

In this paper, for the first time, the simultaneous analysis of wavelet transformation and the concept of the time of strong ground motion in spectral analysis of structures has been used. The purpose of this research is to optimize the calculations related to the main earthquake spectrum. Accordingly, the earthquake is filtered up to 5 steps. At each stage, the filter provides two waves of approximations and details. Because the wave of approximations is closer to the original earthquake, this wave is used for calculations. For this reason, at each stage of the filter, the number of earthquake records is half past. Subsequently, based on the concept of the time of strong ground motion in the wave of the main earthquake and the wave obtained from the wavelet filter, part of the earthquake that has a strong movement is separated. So at this stage, there was a reduction in earthquake records. After that, the spectrum of each of the waveforms is plotted. At the end, a two-dimensional 10-story structure and a three-dimensional five-story structure with each spectrum obtained from two discrete wavelet concepts and the duration of a strong ground motion are analyzed. The results show that by reducing the computation of the spectrum by more than 93%, the structure can be analyzed with an error less than 4%. It can be said that the proposed technique is one of the best techniques presented in the optimization of calculations related to spectral analysis of structures.

کلیدواژه‌ها [English]

  • Spectral analysis: Dynamic analysis : Discrete wavelet : Earthquake :Time of strong ground motion
[1]A.K. Gupta, Response spectrum method in seismic analysis and design of structures, Routledge, 2017.
[2]F. Yu, F. Zhou, L. Ye, Dynamic performance analysis of a seismically isolated bridge under braking force, Earthquake Engineering and Engineering Vibration, 11(1) (2012) 35-42.
[3]M. Krawczuk, M. Palacz, W. Ostachowicz, The dynamic analysis of a cracked Timoshenko beam by the spectral element method, Journal of Sound and Vibration, 264(5) (2003) 1139-1153.
[4]J.J. Bommer, A. Martinez-Pereira, The effective duration of earthquake strong motion, Journal of earthquake engineering, 3(02) (1999) 127-172.
[5]D. Vamvatsikos, C. Allin Cornell, Direct estimation of the seismic demand and capacity of oscillators with multi‐linear static pushovers through IDA, Earthquake Engineering & Structural Dynamics, 35(9) (2006) 1097-1117
[6]J. Morlet, Sampling theory and wave propagation: 51st Ann, Internat. Mtg, Soc. of Expl. Geophys., Session S, 15 (1981).
[7]E. Salajegheh, A. Heidari, Dynamic analysis of structures against earthquake by combined wavelet transform and fast Fourier transform, AJCE, 3(4)(2002) 75-87.
[8]E. Salajegheh, A. Heidari, Time history dynamic analysis of structures using filter banks and wavelet transforms, Computers & structures, 83(1) (2005) 53-68.
[9]E. Salajegheh, A. Heidari, Optimum design of structures against earthquake by adaptive genetic algorithm using wavelet networks, Structural and Multidisciplinary Optimization, 28(4) (2004) 277-285
[10]E. Salajegheh, A. Heidari, Optimum design of structures against earthquake by wavelet neural network and filter banks, Earthquake engineering & structural dynamics, 34(1) (2005) 67-82.
[11]E. Salajegheh, A. Heidari, S. Saryazdi, Optimum design of structures against earthquake by discrete wavelet transform, International journal for numerical methods in engineering, 62(15) (2005) 2178-2192.
[12]A. Heidari, E. Salajegheh, Time history analysis of structures for earthquake loading by wavelet networks, Asian Journal of Structural Engineering, 7 (2006) 155168.
[13]A. HEYDARI, E. Salajegheh, Approximate dynamic analysis of structures for earthquake loading using FWT, Int J Eng. (I.R.I) 20(1) (2007) 37-47.
[14]A. Heidari, E. Salajegheh, Wavelet analysis for processing of earthquake records, Asian Journal of Civil Engineering (Building and Housing), 9(5) (2008) 513-524.
[15]A. Heidari, Optimum design of structures for earthquake induced loading by genetic algorithm using wavelet transform, ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2(1) (2010) 107-117.
[16]A. Heidari, J. Raeisi, R. Kamgar, APPLICATION OF WAVELET THEORY IN DETERMINING OF STRONG GROUND MOTION PARAMETERS, Int. J. Optim. Civil Eng, 8(1) (2018) 103-115.
[17]A. Heidari, J. Raeisi, Optimum Design of Structures Against earthquake by Simulated Annealing Using Wavelet Transform, Soft Computing in Civil Engineering, (2018) 23-33.
[18]R. Varghese, A. Boominathan, S. Banerjee, Numerical Analysis of Seismic Response of a Piled Raft Foundation System, in:  Soil Dynamics and Earthquake Geotechnical Engineering, Springer, 2019, pp. 227-235.
[19]J.S. Owen, A power spectral approach to the analysis of the dynamic response of cable stayed bridges to spatially varying excitation, University of Bristol, 1994.
[20]M. Misiti, Y. Misiti, G. Oppenheim, J.-M. Poggi, Wavelet toolbox, Matlab User’s Guide, 64 (1997).
[21]O. Rioul, P. Duhamel, Fast algorithms for discrete and continuous wavelet transforms, IEEE transactions on information theory, 38(2) (1992) 569-586.
[22]G. Strang, T. Nguyen, Wavelets and filter banks, SIAM, 1996.
[23]S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE transactions on pattern analysis and machine intelligence, 11(7) (1989) 674-693..
[24]G.W. Housner, Intensity of earthquake ground shaking near the causative fault, in:  Proc. of 3rd World Conference on Earthquake Engineering, 1965, pp. 94-115.
[25]B.A. Bolt, Duration of strong ground motion, in: Proceedings of the 5th world conference on earthquake engineering, 1973, pp. 1304-1313.
[26]M.D. Trifunac, A.G. Brady, A study on the duration of strong earthquake ground motion, Bulletin of the Seismological Society of America, 65(3) (1975) 581-626.
[27]J.J. Bommer, A. Martinez-Pereira, The effective duration of earthquake strong motion, Journal of earthquake engineering, 3(02) (1999) 127-172
[28]S.L. Kramer, Geotechnical earthquake engineering. In prentice–Hall international series in civil engineering and engineering mechanics, Prentice-Hall, New Jersey, (1996).