اندرکنش سیال- سازه ناشی از ضربه قوچ در خط لوله تحت فشار با در نظر گرفتن رفتار غیر خطی هندسی دیواره لوله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آب، دانشکده عمران، دانشگاه جندی شاپور، دزفول، ایران

2 گروه آب، دانشکده عمران دانشگاه جندی شاپور، دزفول، ایران

چکیده

جریان گذرا در لوله سبب رخداد اندرکنش بین دیواره لوله و سیال درون آن می شود که به وسیله یک مدل ریاضی که در آن خط لوله به عنوان یک تیر با بارگذاری ناشی از فشار سیال درون آن است قابل بررسی می باشد. مدل مورد نظر یک خط لوله حاوی جریان سیال است که در بالادست به مخزن و در پایین دست به یک شیر متصل است و با بسته شدن ناگهانی شیر تحت نیروهای ضربه قوچ قرار می گیرد. هدف بررسی امکان ناپایداری در این خط لوله در حالتی است که جابجایی های جانبی نسبتا زیاد و در عین حال کرنش ها کوچک هستند. مدل های متعارف تحلیل دینامیکی در تیرها که بر اساس فرضیات کرنش های بسیار کوچک (ε=∂u⁄∂x) بنا شده اند نمی توانند اثر جابجایی های جانبی زیاد را در معادلات حاکم منعکس کنند. در معادلات حاکم تنش های محوری بصورت خطی و کرنش ها به کمک کرنش غیرخطی فون-کارمن مدل می شوند. معادلات دیفرانسیل جزئی بدست آمده به وسیله روش اجزاء محدود در حوزه زمان حل می شوند. از سوی دیگر معادلات خطی ارتعاش جانبی در لوله بی بعد شده و با رسم نمودارهای فرکانس های بدون بعد در مقابل سرعت بدون بعد سیال، پایداری در حوزه فرکانس بررسی می شود. مشاهده شد که در طولهای گیرداری کوتاه معیار حوزه فرکانس (سرعت بدون بعد π و 2π به ترتیب برای شرایط تکیه گاهی دوسر مفصل و دوسر گیردار) بر سیستم حاکم است و معیار فشار بحرانی کمانش رفتار سیستم را پیش بینی نمی کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fluid-structure interaction due to water-hammer in a pressurized pipeline considering geometrical non-linear behavior of the pipe wall

نویسندگان [English]

  • Mohammad Ali Mashak 1
  • Alireza Keramat 2
1 Department of Hydraulics, Faculty of Civil Engineering, University of Gondi Shapour, Dezful, Iran
2 Hydraulics, Civil Engneering, Gondi Shapur, Dezful, Iran
چکیده [English]

The research investigates a fluid filled pipeline that is connected to a tank at its upstream and to a valve in the downstream and undergoes forces of water hammer due to sudden closure of the valve. The aim is to study the possibility of instability in this pipeline when there are large lateral displacements with small strains. As conventional dynamic analysis models of beams which are based on the infinitesimal strain theory (ε=∂u⁄∂x) cannot reflect the effect of large lateral displacements, in this study axial stresses are modeled as linear stresses and strains are modeled by so called von Karman nonlinear strains. The resulting partial differential equations are solved in the time domain by the finite elements method. The linearized equation of lateral vibration is made dimensionless and then it is solved in the frequency domain so as to plot dimensionless frequencies versus the dimensionless fluid velocities which represent the stability of the pipeline. The results provides useful diagrams to anticipate possible pipeline instability induced by fluid velocity.

کلیدواژه‌ها [English]

  • Fluid-structure interaction
  • Non-linear finite element
  • Structural stability
  • Frequency domain solution
  • Water hammer
[1]Bazant, Z.P., Cedolin, L., 1991, “Stability of Structures,Elastic, Inelastic, Fracture, and Damage Theories”, Oxford University Press.
[2]Clough, Ray W., and Joseph Penzien. Dynamics of structures. Computers & Structures, Inc, 2003.
[3]Joukowski, N.E., Mem. Imperial Academy Soc. Of St. Petersburg, Vol. 9, no.1900 ,1898 ,5 (in Russian, translated by O. simin, proc. Amer. Water works Assoc., Vol. ,24 1904, pp. 424-341).
[4]Paigdoussis M. P. 1998 Fluid-Structure Interactions, Vol. 1: Slender Structures and Axial Flow. San Diego, CA: Academic Press Inc.
[5]Lee, Soo Il, and J. Chung. “New non-linear modelling for vibration analysis of a straight pipe conveying fluid.”Journal of sound and vibration -313 :(2002) 254.2 325.
[6]Reddy, J.N., 2004, “An Introduction to Nonlinear Finite Elements Analysis”, Oxford University Press, UK, ISBN -852529-19-0X, 5-852529-19-0-978.
[7]Chung J., N.-C. Kang and J. M. Lee 1996 KSME International Journal 145-138 ,10. A study on free vibration of a spinning disk.
[8]Thurman A. L. and C. D. Mote 1969 Journal of Engineering for Industry 1155-1147 ,91. Non-linear oscillation of a cylinder containing flowing fluid.
[9]Wylie, E.B. and Streeter, V. L., 1993, Fluid Transients in Systems, Englewood Cliffs, New Jersey, USA: Prentice Hall.
[10]Simitses, G.J., Hodges, D.H., 2006, “Fundamentals of Structural Stability”. Elsevier Inc. ISBN: -7506-0-978 9-7875.
[11]Keramat, A., Ahmadi, A., 2012, “Axial vibration of viscoelastic bars using the finite-element method”, Journal of Engineering Mathematics, 117-105 ,77.
[12]Tijsseling, A.S., 2003, “Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration” Journal of Fluids and Structures, Vol 18, Issue 2, September pp. 179-196.