ارزیابی الگوریتمهای انتخابات، رقابت استعماری و روش شبکه عصبی مصنوعی در بررسی روند افت تراز سطح ایستابی دشت رشتخوار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب دانشگاه علوم کشاورزی‌و منابع طبیعی گرگان

2 گروه مهندسی آب دانشگاه تبریز

3 کارشناسی ارشد آب و سازه های هیدرولیکی، دانشگاه آزاد اسلامی، واحد پارس آباد مغان

چکیده

ارزیابی نوسانات سطح ایستابی در مناطق خشک و نیمه خشک کشور، نیازمند پیش بینی دقیق و کارآمدی از نوسانات آن می‌باشد. استفاده از روش‌های نوین از جمله الگوریتم‌های فراابتکاری، شبکه های عصبی مصنوعی و روش های فازی، جهت تولید داده های سطح آب مصنوعی و پیش بینی آینده تراز سطح ایستابی به دلیل کارآیی بسیار بالای خود، بسیار کاربردی است. در پژوهش حاضر، با استفاده از روش های الگوریتم های انتخابات و رقابت استعماری، شبکه عصبی مصنوعی، داده های ماهانه به مدت 9 سال و هم چنین عمق سطح آب زیرزمینی 10 حلقه چاه مشاهده ای، به پیش بینی زماتی 7 ساله تراز سطح ایستابی دشت رشتخوار در استان خراسان رضوی پرداخته شد. به منظور آموزش مدل ها از اطلاعات 10 چاه مشاهده ای که دارای آمار 9 ساله (93-1385 )بودند استفاده گردید، به نحوی که از 70 درصد داده ها به عنوان داده های آموزشی به مدل معرفی و 30 درصد داده ها به عنوان آزمون برای واسنجی به کار گرفته شد. نتایج روش الگوریتم انتخابات، تراز سطح ایستابی آبخوان رشتخوار را برای سال 1400 را بین 14 و 16/5 متر در مناطق مختلف دشت پیش بینی کرد .براساس محاسبه های انجام شده و نتایج به دست آمده از پارامترهای آماری، الگوریتم انتخابات به ترتیب با مقادیر ریشه میانگین مربعات خطا (RMSE ،)ضریب همبستگی (R2 )و معیار نش- ساتکلیف NSE) ،0/029 ،0/90) و 0/73 نسبت به دو روش شبکه عصبی مصنوعی و الگوریتم  رقابت استعماری، دارای توانایی قابل توجهی در پیش بینی تراز سطح ایستابی بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating Election, Imperialist Competitive Algorithms and Artificial Neural Network Method in Investigating the Groundwater Level of Reshtkhar Plain

نویسندگان [English]

  • Yahya Choopan 1
  • Somayeh Emami 2
  • Milad Kheiri ghooje bigloo 3
1 Water Engineering Department of Gorgan university
2 Water Engineering Department of Tabriz university
3 Master of Water and Hydraulic Structures, Islamic Azad University, Pars Abad Unit Moghan
چکیده [English]

Evaluating the groundwater level in arid and semi-arid regions of the country requires accurate prediction and efficiency of its fluctuations. The use of modern methods, including evolutionary algorithms, artificial neural networks, and fuzzy methods, is very useful for predicting the groundwater level and generating artificial water surface data due to its high efficiency. In this research, by using Election and Imperialist Competitive Algorithms, artificial neural network, monthly data for 9 years as well as groundwater level of 10 wells, predicted the 7-year the groundwater level of Reshtkhar plain in Khorasan-Razavi. To train the models, the statistic data was provided on 10 observation wells with a 9-year (2002-2014), which 70% of the data was introduced as training data to the model and 30% of the data was used as a test for calibration of the model. The results of the Election Algorithm predicted Reshtkhar groundwater level for the year 1400, between 14 to 16.5 meters in different areas of the plain. Based on the calculations and the results obtained from the statistical parameters, the Election algorithm was RMSE, R2 and NSE, 0.029, 0.90 and 0.73 respectively, compared with the two methods of artificial neural network and Imperialist Competitive Algorithm has a significant ability to predict the groundwater level.

کلیدواژه‌ها [English]

  • Groundwater Level
  • Election Algorithm
  • Imperialist Competitive Algorithm
  • artificial neural network
  • Prediction
[1]  A. Khashei-Siuki, B. Ghahreman, M. Kochakzadeh, Comparison of Artificial Neural Network Models, ANFIS and regression in estimation of Neyshabour plain aquifer level, Iranian Journal of Irrigation and Drainage, 7(1) (2013) 10-22.
[2]  J. Sadidi, M. Kamanghar, H. Rezaiean, A. R. Hamiian, M.Baaghideg, H. Arianejad, Prediction of arid and semi-arid regions groundwater level using artificial neural network and Gradient Descent method, Geographical studies of arid regions, 4(16) (2014) 39-53.
[3]  A. Panahi, B. Alijni, Prediction of flood peak using neural network model, Journal of Geography, 38 (2013) 113-128.
[4]  M. Mohtasham, A. A. Dehghani, A. Akbarpour, M. Meftah, B. Etebari, Groundwater level determination by using artificial neural network (Case study: BirjandAquiefer), Iran. J. Irrig. Drain, 1(4) (2010) 1-10.
[5]  T. Rajaie, F. Pour-Aslan, Prediction of the time and local of thegroundwater level of Davarzan plain. Hydrogeomorphology, 4 (2015) 1-19. 
[6]  M .H. Habibi, A. A. Nadiri, A. Asghari-Moghaddam, Spatio-temporal Groundwater Level Prediction Using Hybrid Genetic-Kriging Model (Case Study: Hadishahr Plain), Iran-Water Resources, 11(3) (2016) 85-99.
[7]  V. Moosavi, M. Vafakhah, B. Shirmohammadi, N. Behnia, A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods, J Water Resour Manage, 27 (2013) 1301–1321.
[8]  F. Akbarzadeh, H. Hasanpour, S. Emamgholizadeh, Groundwater Level Prediction of Shahrood Plain using RBF Neural Networks, Journal of Watershed Management Research, 7(13) (2014) 104-118.
[9]  F. Abareshi, M. Meftah Halghi, H. Sanikhani, A. A. Dehghani, Comparison of three intelligence techniques for predicting water table depth fluctuations (Case study: Zarringol plain). J. of Water and Soil Conservation, 21(1) (2014) 163-180. 
[10] B. Mohammadi, S. M. Biazar, E. Asadi, Performance of hybrid particle swarm algorithm to simulate water level (Case study: Ardabil aquifer), Stained Rainfall Systems, 5(15) (2017) 77-87.
[11] E. Valizadegan, S. Yazdanpanah, Quantitative model of optimal conjunctive use of Mahabad plain’s surface and underground water resources, Amirkabir J. Civil Eng, 50(4) (2018) 11-20.
[12] M. Ehteshami, M. Khorasani, H. Ghadimi, N. Hayatbini, Analysis of Temporal and Periodic Changes of Groundwater Depth and Nitrate Concentration Using Time Series Modeling (Case Study: Kabudarahang Plain), Amirkabir J. Civil Eng, 49(2) (2017) 285-293.
[13] S. Sahoo, T. A. Russo, J. Elliott, I. Foster, Machine learning algorithms for modeling groundwater level changes in agricultural region of the U.S, Water Resources Research, 53(5) (2017).
[14]  X. Wang, T. Liu, X. Zheng, H. Peng, J. Xin, B. Zhang , Short-term prediction of groundwater level using improved random forest regression with a combination of random features, Applied Water Science, 8(125) (2018).
[15] H. Emami, F. Derakhshan, Election algorithm: A new socio-politically inspired strategy, AI Communications, 28 (2015) 591–603. 
[16] M. B. Menhaj, Computational Intelligence, No. 1. The Basic of Artificial Neural Networks, Amirkabir University, (1998). 
[17] E. Atashpaz-Gargari, Development of social optimization algorithm and its efficiency review, Master’s Thesis, Faculty of Electrical and Computer Engineering, University of Tehran, (2007).